Composites World / NetComposites

Connecting you to the composites industry


NetComposites Ltd has transferred the rights and ownership of this website to Gardner Business Media Inc.

On 1st January 2020, NetComposites' media assets including, newsletters and conferences were transferred to Composites World (Gardner Business Media).

This site is no longer being updated. Please direct all enquiries to

For further details see our joint press release.

SGL Carbon Fibre Employed in University Of Stuttgart Architectural Project

SGL Carbon Fibre Employed in University Of Stuttgart Architectural Project

  • Tuesday, 27th June 2017
  • Reading time: about 2 minutes

The Institute for Computational Design and Construction (ICD) and the Institute of Building Structures and Structural Design (ITKE) at the University of Stuttgart, Germany, are researching a novel production process for architectonic structures based on SGL Group’s SIGRAFIL 50k carbon fibres.

An initial installation from the project can currently be seen on the University of Stuttgart’s inner courtyard. For this, SGL delivered 104 km of carbon fibre from its Moses Lake site in Washington state, US.

The project is investigating natural biological construction processes of long span fibre composite structures. Serving as a model here were the larvae of the apple leaf miner moth (Lyonetia Clerkella), which spin cocoons on cherry and apple tree leaves using long threads of fibre. Researchers at the ICD and ITKE, together with students of the master study programme ITECH, are now trying to apply this special technique to the construction of architectonic structures made of carbon and glass fibre reinforced composites and develop a new production process based for fibre composite constructions. As carbon fibres are lightweight and have a high tensile strength, a radically different approach becomes possible involving new production processes with multiple robot systems that communicate with each other, precisely processing the fibres while handling high tension forces. This approach enables a scalable production process for long span fibre composite constructions as they could be used in architectural design in the future.

“In this case, we use the glass fibres purely as a formwork on which we apply the carbon fibres,” says Benjamin Felbrich, Research Assistant at the ICD. “Loads in parts subject to both tension and pressure are primarily transferred through the carbon fibres. With its long spanning cantilever form, this year’s pavilion places a special focus on the options offered by this material.”

SIGRAFIL 50k carbon fibre is often used today as basis for applications in the fields of mobility and energy – from the automotive industry to aerospace, through to wind energy. The new generation of these large-tow fibres is suited for automated production processes and already in use as standard in the BMW i3, i8 and the new BMW 7 Series, among others.

Image provided by SGL

For more information visit:

Share this article


Related News

Comments (0)

Leave your comment