Composites World / NetComposites

Connecting you to the composites industry

Advertisement

NetComposites Ltd has transferred the rights and ownership of this website to Gardner Business Media Inc.

On 1st January 2020, NetComposites' media assets including netcomposites.com, newsletters and conferences were transferred to Composites World (Gardner Business Media).

This site is no longer being updated. Please direct all enquiries to netcomposites@gardnerweb.com.

For further details see our joint press release.

NIST Laser-Based Method Cleans Up Grubby Nanotubes

  • Sunday, 14th January 2007
  • 0 comments
  • Reading time: about 3 minutes

Before carbon nanotubes can fulfil their promise as ultrastrong fibers, better methods are needed for purifying raw nanotube materials.

Researchers at the National Institute of Standards and Technology (NIST) and the National Renewable Energy Laboratory (NREL), have taken a step toward this goal by demonstrating a simple method of cleaning nanotubes using carefully calibrated laser pulses.

When carbon nanotubes are synthesized by any of several processes, a significant amount of contaminants such as soot, graphite and other impurities also is formed. Purifying the product is an important issue for commercial application of nanotubes. In a forthcoming issue of Chemical Physics Letters, the NIST/NREL team describes how pulses from an excimer laser greatly reduce the amount of carbon impurities in a sample of bulk carbon single-walled nanotubes, without destroying tubes. Both visual examination and quantitative measurements of material structure and composition verify that the resulting sample is cleaner. The exact cleaning process may need to be slightly modified depending on how the nanotubes are made, the authors note, but the general approach is simpler and less costly than conventional wet chemistry processes, which can damage the tubes and also require removal of solvents afterwards.

“Controlling and determining tube type is sort of the holy grail right now with carbon nanotubes. Purity is a key variable,” says NIST physicist John Lehman, who leads the research. “Over the last 15 years there’s been lots of promise, but when you buy some material you realize that a good percentage of it is not quite what you hoped. Anyone who thinks they’re going into business with nanotubes will realize that purification is an important and expensive step. There is a lot of work to be done.”

The new method is believed to work because, if properly tuned, the laser light transfers energy to the vibrations and rotations in carbon molecules in both the nanotubes and contaminants. The nanotubes, however, are more stable, so most of the energy is transferred to the impurities, which then react readily with oxygen or ozone in the surrounding air and are eliminated. Success was measured by examining the energy profiles of the light scattered by the bulk nanotube sample after exposure to different excimer laser conditions. Each form of carbon produces a different signature. Changes in the light energy as the sample was exposed to higher laser power indicated a reduction in impurities. Before-and-after electron micrographs visually confirmed the initial presence of impurities as well as a darkening of the nanotubes post-treatment, suggesting less soot and increased porosity.

The researchers developed the new method while looking for quantitative methods for evaluating laser damage to nanotube coatings for next-generation NIST standards for optical power measurements.


For more information visit:


Share this article


Categories


More News


Comments (0)

Leave your comment