Composites World / NetComposites

Connecting you to the composites industry

Advertisement

NetComposites Ltd has transferred the rights and ownership of this website to Gardner Business Media Inc.

On 1st January 2020, NetComposites' media assets including netcomposites.com, newsletters and conferences were transferred to Composites World (Gardner Business Media).

This site is no longer being updated. Please direct all enquiries to netcomposites@gardnerweb.com.

For further details see our joint press release.

MU Engineers Develop Safer, Blast-Resistant Glass

  • Friday, 18th September 2009
  • 0 comments
  • Reading time: about 3 minutes

More in Aerospace

Alvant Recognised at BEEA Awards

  • 21st October 2019

Greene Tweed Launches Fusion 665

  • 16th October 2019

Evonik Adds to the TROGAMID(r) Product Group

  • 15th October 2019

University of Missouri researchers are developing and testing a new type of blast-resistant glass that they hope will be thinner and lighter than conventional technology and less vulnerable to small-scale explosions.

Conventional blast-resistant glass is made with laminated glass that has a plastic layer between two sheets of glass. MU researchers are now replacing the plastic layer with a transparent composite material made of glass fibres that are embedded in plastic.

The glass fibres add strength because, unlike plastic, they are only about 25 microns thick, which is about half the thickness of a typical human hair, and leave little room for defects in the glass that could lead to cracking.

“The use of a transparent composite interlayer provides us the flexibility to change the strength of the layer by changing the glass fibre quantity and its orientation,” said Professor Sanjeev Khanna, Associate Professor of Mechanical and Aerospace Engineering in the MU College of Engineering

According to scientists at MU, they aim to cut down the width of protective glass which ranges from one inch to half an inch in thickness. “The glass we are developing is less than one-half of an inch thick. Because the glass panel will be thinner, it will use less material and be cheaper than what is currently being used,” added Professor Khanna.

In tests, researchers are observing how the glass reacts to small-scale explosions caused by a grenade or hand-delivered bomb. They tested the glass by exploding a small bomb within close proximity of the window panel. After the blast, the glass panel was cracked but had no holes in the composite layer.

“The new multilayered transparent glass could have a wide range of potential uses if it can be made strong enough to resist small-scale explosions,” Khanna said. “The super-strong glass also may protect residential windows from hurricane winds and debris or earthquakes. Most hurricane damage occurs when windows are punctured, which allows for high-speed wind and water to enter the structure.”

The research is funded by a $250,000 grant from the Science and Technology Directorate of the U.S. Department of Homeland Security. Future tests will be done on larger pieces of glass that are equivalent to standard window size, and researchers could potentially test the glass on large-scale explosions.

Please visit the following link to see a video demonstration of the glass’ resistant properties – http://umsystem.edu/video#blast


For more information visit:


Share this article


Categories


More News


Comments (0)

Leave your comment