Composites World / NetComposites

Connecting you to the composites industry


NetComposites Ltd has transferred the rights and ownership of this website to Gardner Business Media Inc.

On 1st January 2020, NetComposites' media assets including, newsletters and conferences were transferred to Composites World (Gardner Business Media).

This site is no longer being updated. Please direct all enquiries to

For further details see our joint press release.

Henkel and Quickstep Present Study of Benzoxazine Components and OoA Manufacturing Process for Aircraft and Helicopters

Henkel and Quickstep Present Study of Benzoxazine Components and OoA Manufacturing Process for Aircraft and Helicopters

  • Tuesday, 28th October 2014
  • Reading time: about 6 minutes

More in Aerospace

Solvay’s Xencor LFT Chosen for All-polymer E-bike

  • 22nd October 2019

Sigmatex Sigma Design Showcased

  • 21st October 2019

Alvant Recognised at BEEA Awards

  • 21st October 2019

In the study conducted by Henkel and Quickstep, a benzoxazine resin was combined with a rapid heating and cooling manufacturing approach to produce high temperature resistant composite laminates and parts at significantly lower cycle times.

With very limited resin options available to manufacture such composite components, Henkel and Quickstep explain that they analysed a Loctite benzoxazine resin, which offers high glass transition temperatures and excellent hot/wet performance, combined with room temperature storage and easy processing to develop energy efficient and manufacturing friendly Out-of-Autoclave (OoA) process.

The use of liquid resin processes such as resin transfer moulding (RTM) and vacuum assisted RTM (VARTM) has developed rapidly in recent years. There is a strong desire to use these processes more extensively in future aerospace structures because large and complex parts can be manufactured economically, and the costs of autoclave processing of prepreg materials can be avoided. Despite the benefits of liquid resin processes, there are challenges to extending their use to primary structure and high temperature applications due to the limitations of the resin systems available including toughness, high temperature performance and cost-effective and controlled heating and cooling during processing.

Key mechanical strength properties were measured and are reported. The technique was then applied to a curved, integrally stiffened composite panel to demonstrate the ability of the process to produce complex parts suitable for use in aerospace applications.

Epoxy, polyimide, polyurethane, bismaleimide (BMI), benzoxazine and cyanate ester thermosetting polymers are commonly used in high temperature composite applications; the specific material system is selected based on the application area. Nevertheless, processing of each resin type differs greatly and requires attention towards the issues of foaming, pot life, and the possibility to use as an infusion resin, including viscosity, infusion temperature, curing temperature, etc.

Being related to the chemistry of phenolic resins, benzoxazines offer excellent flame retardancy and very low cure shrinkage. In contrast to phenolic resins, they cure without elimination of volatiles and show significantly better properties of the cured material. Henkel has introduced a number of commercial benzoxazine systems suitable for use in prepregs, adhesives and infusion processes. For this study, Loctite BZ 9130 AERO resin was selected and characterised using the Quickstep process for the infusion processing.

Key characteristics of the resin include:

  • Room temperature stability, requiring no refrigerated storage
  • A one-part system, so no mixing required by the processor
  • Broad processing window, suitable for large parts and complex shapes
  • Stable, low viscosity at infusion temperature
  • Low heat release during cure, reducing exotherm risk
  • High hot/wet property retention for higher service temperature applications
  • Increased toughness
  • Environmentally compatible processing

Preform resin infusion technology is the main target to avoid prepreg and autoclave processing. This alone is beneficial by eliminating the needs of pre-impregnation processes, cold storage and wastage of specially treated materials. For the laminate and demonstrator curing the Quickstep process was chosen. The Quickstep process is based on the principle of conduction heating. This process utilises a heat transfer fluid (HTF) to apply heat and pressure to the uncured component during processing. Rapid transfer of heat energy into the curing substrate (fibre and resin) is the heart of this technology.

Conventional mould heating, such as that in an oven or autoclave, causes uneven temperature distribution over the mould surface. The use of the fluid-based Quickstep process solves this problem, while achieving the fast ramp-up rates. Uneven temperature distribution over the laminate also affects resin shrinkage and may cause changes in polymer morphology. The Henkel benzoxazine resins have lower heat of cure compared to conventional resins and therefore can be heated rapidly without risk of uncontrolled exotherm.

A heated fluid and slightly pressurised Quickstep process (up to 0.8 bar) accurately achieves the required mould temperature all over the surface with faster ramp rates and effective utilisation of energy. This helps to modify the cure cycle and dwell time without affecting the physical and chemical nature of a polymeric resin.

By combining the cure kinetics of selected resin, OoA curing and online temperature monitoring during the process, the dwell times to complete the laminate curing can be shortened to a great extent. Ultimately, this also causes lower energy consumption during the manufacturing processes. Additionally, fewer moulds are required for serial production and reduced machine work hours and maintenance, etc., resulting in lower costs.

In order to demonstrate the capability of the resin and infusion/curing techniques on a scale larger than flat laminates, a demonstrator panel, approximately 1 m2 was preformed and infused. This panel consists of 5 layers of 370 gsm 5HS carbon fabric for the skin plies, resulting in a skin thickness of 2 mm, onto which a series of four hat-shaped, or omega-type stiffeners were placed using removable mandrels. The assembly was bagged and placed into the Quickstep curing chamber for infusion and cure.

After moulding and post cure, the panels were tested by Henkel. Thickness measurements were in the expected range for woven fabric panels produced using the VARTM process. The hat-stiffened demonstrator panel was inspected for thickness and any evidence of dry spots. Visual inspection indicated no evidence of dry areas throughout the panel. Microscopy analysis of trimmed edges confirmed no visual internal voids in the panel or stiffeners.

The processing of the Loctite BZ 9130 resin proved to be “infusion-friendly” in the Quickstep process, and void-free panels were produced with fibre volumes in the 55 to 57% range, which is considered high for a woven fabric laminate. Mechanical evaluation of the panels confirmed values similar to or higher than those achieved in standard oven-based VARTM processing. The Quickstep process provided a faster heating and cooling of the laminate and uniform temperature during the infusion process. The results demonstrate the synergistic benefits of the Henkel benzoxazine infusion resin and the Quickstep process technology.

Henkel and Quickstep presented the full study at CAMX in Orlando, USA, in mid-October.

For more information visit:

Share this article


More News

Comments (0)

Leave your comment