Composites World / NetComposites

Connecting you to the composites industry


NetComposites Ltd has transferred the rights and ownership of this website to Gardner Business Media Inc.

On 1st January 2020, NetComposites' media assets including, newsletters and conferences were transferred to Composites World (Gardner Business Media).

This site is no longer being updated. Please direct all enquiries to

For further details see our joint press release.

Composite Space Capsule Concept Passes Tests

  • Thursday, 28th January 2010
  • Reading time: about 3 minutes

A NASA team looking into design concepts for future space capsules believe they have successfully demonstrated that an all-composite structure is a feasible alternative to traditional metal capsules for carrying astronauts into space and returning them safely to Earth.

Engineers say that these composite materials promise potential benefits over traditional metal structures, one significant benefit being that they can easily be formed into complex shapes that may be more structurally efficient.

A team led by the NASA Engineering and Safety Center (NESC) developed and tested the capsule – called a crew module – in a series of full scale structural tests at NASA’s Langley Research Center, Hampton, Va., over a several month period.

“”Our tests showed that a composite module can ‘achieve the mission’ with damage that is likely to occur but could go undetected,”” said Mike Kirsch, manager of the Composite Crew Module (CCM) project. “”The test article withstood twice the design internal pressures with known damage and then was subjected to cyclic testing to four times the design life with no detrimental damage growth,”” he added.

A follow-on round of impact assessments is planned to study the effects of higher impact energies.

“”We are very pleased with the entire test series. Throughout testing, there were no anomalies and performance aligned amazingly well with analytical predictions,”” Kirsch said.

The composite crew module was designed, manufactured, inspected and tested in a collaborative partnership between NASA and industry. Partners include subject matter experts from nine of ten NASA centres, the Air Force Research Laboratories, Alcore Corporation, Alliant Techsystems (ATK), Bally Ribbon Mills, Collier Corporation, Genesis Engineering, Janicki Industries, Lockheed Martin and Northrop Grumman.

One of the many collaboration success stories was realized with the help of recently developed carbon fibre tooling provided by Janicki. The tooling technology produced large (approximate 12 foot diameter) precision cure tools that enabled joining of major subassemblies outside of an autoclave. This feature would allow for large or cumbersome internal components to be installed and integrated at the subcomponent stage for easier access and for parallel work flow prior to assembly of the system. The technology also demonstrates possible approaches for assembling components too big for autoclaves, such as a heavy lift vehicle shroud.

Kirsch believes work on the CCM Project will enable more informed decisions about structural materials for future NASA spacecraft.

“”One of the primary project objectives was to gain hands-on experience for NASA with our contract partners by designing, building and testing a full scale complex structure such as this, then communicate lessons learned to engineers working composites across the agency,”” said Kirsch. “”There have been many lessons learned, including the challenge of keeping weight down while meeting design requirements for a human-rated spacecraft,”” he said.

NESC sponsored the three-year CCM project as part of its mission to solve technical problems related to spaceflight and to make spaceflight safer. The CCM is an all-composite representation of the part-metal, part-composite flight crew module Orion, which is part of NASA’s Constellation Program to return man to the moon and/or Mars.

For more information visit:

Share this article

More News

Comments (0)

Leave your comment