Composites World / NetComposites

Connecting you to the composites industry


NetComposites Ltd has transferred the rights and ownership of this website to Gardner Business Media Inc.

On 1st January 2020, NetComposites' media assets including, newsletters and conferences were transferred to Composites World (Gardner Business Media).

This site is no longer being updated. Please direct all enquiries to

For further details see our joint press release.

Collaboration Aims to Make Air Travel Greener

  • Friday, 12th February 2010
  • Reading time: about 3 minutes

More in Aerospace

Alvant Recognised at BEEA Awards

  • 21st October 2019

Greene Tweed Launches Fusion 665

  • 16th October 2019

Evonik Adds to the TROGAMID(r) Product Group

  • 15th October 2019

Carbon emissions from air travel could be reduced thanks to a £1.4million collaboration between engineers from the Universities of Bristol and Bath and the aerospace industry.

The project will investigate new ways of using composite materials for wing panels in aircraft.

The research, funded by the Engineering & Physical Sciences Research Council (EPSRC) and aircraft manufacturers Airbus and GKN, will look at methods of improving the structural efficiency of laminated carbon fibre composites.

It is expected that scientists can reduce weight and production cost by at least 10% compared with existing stiffened panels made from pre-impregnated material. This potential weight loss should lead to fuel savings and therefore reduce CO2 emissions from the aviation industry, in turn helping lessen the aircrafts impact on the environment.

According to researchers at Bristol University, the key innovation of the project will be to exploit state-of-the-art manufacturing, Variable Angle Tow (VAT) placement (where stiff carbon fibres are steered along curves to maximize structural performance).

Scientists say that the aforementioned savings can be achieved with test specimens, but further studies are required to characterise structural and material behaviour from the full component level down to individual lamina and their interfaces; this should lead to the entire structural system including material, geometrical and manufacturing parameters being optimised.

The extra design freedoms, created by curved fibre trajectories, provide scope for pushing back the envelope of structural efficiency.

The team’s preliminary VAT results indicate the prospect of developing buckle-free structures, reducing the need for stiffeners, with associated substantial cost and weight savings. Moreover, the specific manufacturing capability to produce variable angle fibres is said to be unique to the UK, having been modified from an embroidery machine, using dry fibres rather than pre-impregnated material.

Professor Paul Weaver, from the Department of Aerospace Engineering and the Advanced Composites Centre for Innovation and Science (ACCIS), is leading the University of Bristol team, which includes Dr Kevin Potter and Dr Stephen Hallett.

The Bristol-based team will be leading the development and manufacturing of the new carbon fibre materials, and the Bath team will be investigating different designs for the structures of wing panels to test their damage tolerance. Both teams will be using mathematical modelling techniques to optimise and test their designs.

Dr Richard Butler is leading the University of Bath team, which includes Dr H Alicia Kim and Professor Giles Hunt. The project stems from research carried out under the ABBSTRACT consortium (Airbus, Bristol, Bath Strategic Research Alliance in Composites Technology).

The addition of GKN to the collaboration, as one of Airbus’ risk sharing partners and supplier of major wing components, creates a strong link with the manufacturing industry.

Dr Butler said: “This project could really make a difference in reducing the environmental impact of air travel. We will be pushing the boundaries of composites technology and believe we can help achieve thousands of tonnes in fuel saving over the life of an aircraft.”

Professor Weaver added: “This exciting programme will help ensure that the UK is at the forefront of aircraft structures technology.”

For more information visit:

Share this article


More News

Comments (0)

Leave your comment