NetComposites
Attwater

DSM Tests Hydrogen Storage Tank Concept

05 September 2017

DSM Tests Hydrogen Storage Tank Concept

DSM is introducing a materials solution for high-pressure composite tanks for use in hydrogen storage.

Hydrogen tanks are a key enabling technology for advancing hydrogen and fuel cell technologies in applications that include stationary power, portable power and transportation. Hydrogen has the highest energy per mass of any fuel, DSM reports. 1 kg of hydrogen is equivalent to 33.3 kWh, which means it delivers three times more energy than conventional fuel. But hydrogen’s low ambient temperature density results in a low energy per unit volume. This requires the development of advanced storage methods that have the potential for higher energy density.

DSM is working to apply its materials expertise to make safe, effective and very lightweight hydrogen tanks.

“We had already developed this technology for compressed natural gas (CNG) tanks, and now we are testing the same material and design principles for hydrogen tanks to meet the needs of the automotive industry,” says Bert Keestra, Application Development Engineer at DSM.

The two-part tank design features a proven, blow moulded liner made of Akulon Fuel Lock, a polyamide 6-based engineering plastic with a very high barrier to hydrocarbons. The tank can then potentially be further reinforced by wrapping it in unidirectional (UD) continuous fibre reinforced thermoplastic tapes made of EcoPaXX polyamide 410.

This combination of commercially available materials has already proven to be effective in CNG tanks and DSM is now actively testing the concept in hydrogen tanks. The result would be the lightest-weight plastic tank available for hydrogen storage applications, the company says. Reducing weight is key, since every 10 kg removed from a vehicle roughly translates into a reduction in CO2 emissions from the vehicle on the road of 1 g per km.

For the liner, Akulon Fuel Lock greatly reduces weight compared to metal, DSM states. It also offers improved permeation versus polyolefin liners, meaning that the gas stays in the tank. The liner material, which is 100% recyclable, is safe with no debuckling. Furthermore, the material is optimised to remain ductile and tough, even at extremely low temperatures (-40°C). This was important for CNG, but is even more vital for hydrogen storage, as the working pressures are much higher.


Photo provided by DSM




Share this story


Related / You might like...

Benefits Measure up With FORCE Calibration

CGTech has unveiled a bespoke software package which can replicate the cutting conditions that would be achieved in real-world applications.

Michelman to Introduce Line-up of Fibre Sizings that Improve Performance of Carbon Fibre Composites

Michelman will introduce visitors to the JEC Forum Chicago Conference & Business Meetings to its portfolio of fibre sizing solutions that help industry exploit the benefits of composites: design freedom, consolidation of parts, and integration of functionality while meeting lightweighting initiatives.

3D Printing and Windform Composite Materials Used in Aero-elastic Wind Tunnel Demonstrators

CRP Technology collaborated with the Department of Aerospace Science and Technology of the Politecnico di Milano (PoliMi) on the construction of parts for the aeroelastic wind tunnel demonstrators for ‘Aeroelastic Flutter Suppression (AFS)’ e ‘GLAMOUR’ projects.