NetComposites
Juniar Spraybooths

DSM Tests Hydrogen Storage Tank Concept

05 September 2017

DSM Tests Hydrogen Storage Tank Concept

DSM is introducing a materials solution for high-pressure composite tanks for use in hydrogen storage.

Hydrogen tanks are a key enabling technology for advancing hydrogen and fuel cell technologies in applications that include stationary power, portable power and transportation. Hydrogen has the highest energy per mass of any fuel, DSM reports. 1 kg of hydrogen is equivalent to 33.3 kWh, which means it delivers three times more energy than conventional fuel. But hydrogen’s low ambient temperature density results in a low energy per unit volume. This requires the development of advanced storage methods that have the potential for higher energy density.

DSM is working to apply its materials expertise to make safe, effective and very lightweight hydrogen tanks.

“We had already developed this technology for compressed natural gas (CNG) tanks, and now we are testing the same material and design principles for hydrogen tanks to meet the needs of the automotive industry,” says Bert Keestra, Application Development Engineer at DSM.

The two-part tank design features a proven, blow moulded liner made of Akulon Fuel Lock, a polyamide 6-based engineering plastic with a very high barrier to hydrocarbons. The tank can then potentially be further reinforced by wrapping it in unidirectional (UD) continuous fibre reinforced thermoplastic tapes made of EcoPaXX polyamide 410.

This combination of commercially available materials has already proven to be effective in CNG tanks and DSM is now actively testing the concept in hydrogen tanks. The result would be the lightest-weight plastic tank available for hydrogen storage applications, the company says. Reducing weight is key, since every 10 kg removed from a vehicle roughly translates into a reduction in CO2 emissions from the vehicle on the road of 1 g per km.

For the liner, Akulon Fuel Lock greatly reduces weight compared to metal, DSM states. It also offers improved permeation versus polyolefin liners, meaning that the gas stays in the tank. The liner material, which is 100% recyclable, is safe with no debuckling. Furthermore, the material is optimised to remain ductile and tough, even at extremely low temperatures (-40°C). This was important for CNG, but is even more vital for hydrogen storage, as the working pressures are much higher.


Photo provided by DSM





Related / You might like...

TFP Presents Nonwoven Solutions for Transportation

Technical Fibre Products (TFP) will exhibit nonwovens for use in surface finishing, imparting EMI shielding or fire protection, and other transport applications, at the JEC Conference on The Future of Composites in Transportation, taking place in Chicago, US, on 27-28 June.

Visitor Registration Opens for Advanced Engineering 2018

Advanced Engineering 2018, the UK’s annual gathering of OEMs and engineering supply chain professionals, has opened registration for its 10th anniversary show. The first 50 people signing up will be offered a free Ultra High Capacity Power Bank for mobile phones and laptops, to be picked up at the show.

Prodrive Achieves IATF 16949 Automotive Standard

Prodrive Composites reports that it is the first UK carbon composites business to attain full certification against the newly released IATF 16949:2016 automotive standard.