NetComposites
Thermwood

DSM Tests Hydrogen Storage Tank Concept

05 September 2017

DSM Tests Hydrogen Storage Tank Concept

DSM is introducing a materials solution for high-pressure composite tanks for use in hydrogen storage.

Hydrogen tanks are a key enabling technology for advancing hydrogen and fuel cell technologies in applications that include stationary power, portable power and transportation. Hydrogen has the highest energy per mass of any fuel, DSM reports. 1 kg of hydrogen is equivalent to 33.3 kWh, which means it delivers three times more energy than conventional fuel. But hydrogen’s low ambient temperature density results in a low energy per unit volume. This requires the development of advanced storage methods that have the potential for higher energy density.

DSM is working to apply its materials expertise to make safe, effective and very lightweight hydrogen tanks.

“We had already developed this technology for compressed natural gas (CNG) tanks, and now we are testing the same material and design principles for hydrogen tanks to meet the needs of the automotive industry,” says Bert Keestra, Application Development Engineer at DSM.

The two-part tank design features a proven, blow moulded liner made of Akulon Fuel Lock, a polyamide 6-based engineering plastic with a very high barrier to hydrocarbons. The tank can then potentially be further reinforced by wrapping it in unidirectional (UD) continuous fibre reinforced thermoplastic tapes made of EcoPaXX polyamide 410.

This combination of commercially available materials has already proven to be effective in CNG tanks and DSM is now actively testing the concept in hydrogen tanks. The result would be the lightest-weight plastic tank available for hydrogen storage applications, the company says. Reducing weight is key, since every 10 kg removed from a vehicle roughly translates into a reduction in CO2 emissions from the vehicle on the road of 1 g per km.

For the liner, Akulon Fuel Lock greatly reduces weight compared to metal, DSM states. It also offers improved permeation versus polyolefin liners, meaning that the gas stays in the tank. The liner material, which is 100% recyclable, is safe with no debuckling. Furthermore, the material is optimised to remain ductile and tough, even at extremely low temperatures (-40°C). This was important for CNG, but is even more vital for hydrogen storage, as the working pressures are much higher.


Photo provided by DSM




Share this story


Related / You might like...

Cobra International Exhibits Product Range at CAMX 2018

Cobra International will showcase a range of composite products at CAMX 2018, including carbon fibre components for the automotive, transportation, marine, water sports and luxury sectors.

Prodrive Develops Process for Recyclable Thermoplastic Composites

UK company Prodrive Composites has developed a process for manufacturing recyclable composite components that can satisfy future end-of-life requirements without any compromise in the performance of the original parts. The company says the P2T (Primary to Tertiary) process not only simplifies recycling, but endows a composite material with the potential to fulfil three or more useful lifetimes.

Elemental RP1 Sports Car Showcases Capabilities of Tailored Fibre Placement

Designers at Elemental Motor have utilised tailored fibre placement (TPF) to extend the use of carbon composites in its RP1 sports car.