NetComposites
Attwater

GKN Aerospace Delivers Innovative Clean Sky Wing Structure

12 January 2016

GKN Aerospace Delivers Innovative Clean Sky Wing Structure

GKN Aerospace has delivered innovative wing components as part of a major research programme to test and measure the benefits of ‘natural laminar flow’ (NLF) designs during trials on the wing of a flight test aircraft.

According to GKN, the Breakthrough Laminar Aircraft Demonstrator in Europe (BLADE) project is part of the Clean Sky Smart Fixed Wing Aircraft (SWFA) programme, an extensive, 50% European Union-funded, multi-partner activity aimed at lowering fuel consumption and emissions by reducing aircraft drag.

GKN Aerospace has delivered the assemblies and upper covers that form part of the NLF wing section on the starboard wing of the Airbus A340 flight test aircraft. It claims that these structures offer NLF levels of performance through the adoption of a totally new design approach and the application of novel manufacturing technologies that deliver the ultra-high tolerances and exceptional surface finish required.

During flight tests, taking place in 2017, this wing section will be used to test the performance characteristics of NLF wing architecture, helping prove predicted economic and environmental benefits: An NLF wing is expected to reduce wing drag by 8% and improve fuel consumption by approaching 5%.

Russ Dunn, Senior Vice President, Engineering and Technology at GKN Aerospace explains, “The SFWA BLADE programme is allowing us to progress innovative technologies, concepts and capabilities with the potential to bring about a step change in aircraft fuel consumption.”

Dunn continues, “The key challenge with designing and manufacturing an NLF wing, with the many aerodynamic benefits that promises, stems from the need to tightly control the wing surface. It is vital to eliminate features such as steps, gaps, surface roughness and waviness or fastener heads as these all lead to more traditional ‘turbulent flow’ performance levels. The GKN Aerospace team has created these integrated, co-cured composite upper covers and very high tolerance leading edge surfaces using the same structured design and development process applied in commercial aircraft programmes. As a result, our first part was of very high quality and has been delivered for the flight test programme - which for such an innovative structure was a huge achievement for the entire team.”

 


Photo provided by GKN





comments powered by Disqus

Related / You might like...

Thai Flight Training Orders Spatial A320 Door Trainer

Thai Flight Training (TFT), a subsidiary of Thai Airways, recently ordered an Airbus A320 door trainer from Spatial Composite Solutions.

NTPT and EPFL Research Discontinuous Fibre Composite Tubes

NTPT is collaborating with the Ecole polytechnique fédérale de Lausanne - Swiss Centre of Technology (EPFL) and other partners to research discontinuous fibre composite tubes for high performance applications.

Gulf Aviation Academy Orders Third Simulator from Spatial

Gulf Aviation Academy (GAA) recently ordered a Boeing 787 door trainer from Spatial Composite Solutions, complete with Spatial’s virtual slide trainer.