NetComposites
Airtech

Ben-Gurion University Develops Efficient System for Producing Graphene for Energy Storage Applications

28 July 2015

Ben-Gurion University of the Negev (BGU) and University of Western Australia researchers have developed a new process to develop few-layer graphene for use in energy storage and other material applications that is faster, potentially scalable and surmounts some of the current graphene production limitations.

BGU explains that current methods for graphene production require toxic chemicals and lengthy and cumbersome processes that result in low yield that is not scalable for commercial applications.

The new revolutionary one-step, high-yield generation process is detailed in the latest issue of Carbon, published by a collaborative team that includes BGU Prof. Jeffrey Gordon of the Alexandre Yersin Department of Solar Energy and Environmental Physics at the Jacob Blaustein Institutes for Desert Research and Prof. H.T. Chua's group at the University of Western Australia (UWA, Perth).

According to the company, its ultra-bright lamp-ablation method surmounts the shortcomings and has succeeded in synthesising few-layer (4-5) graphene in higher yields. It involves a novel optical system that reconstitutes the immense brightness within the plasma of high-power xenon discharge lamps at a remote reactor, where a transparent tube filled with simple, inexpensive graphite is irradiated.

 

The process is relatively faster, safer and green, devoid of any toxic substances (just graphite plus concentrated light).

Following this proof of concept, the BGU-UWA team is now planning an experimental program to scale up this initial success toward markedly improving the volume and rate at which few-layer (and eventually single-layer) graphene can be synthesised.





Share this story


Related / You might like...

Huntsman PU Composite Technologies Take Centre Stage at Gent Design Exhibition

Composite products, based on polyurethane technologies from global chemical company Huntsman, are taking centre stage at a design exhibition at the Design Museum Gent, Belgium.

MoPaHyb Final Symposium in Pfinztal Consortium Led by Dieffenbacher Celebrates Project’s Successful Conclusion

In late November, the 14 project partners in the MoPaHyb consortium developing a modular production plant for hybrid high-performance components wrapped up their successful efforts with a two-day symposium in Pfinztal, Germany.

Metal Matrix Composites Deliver 40 Percent Weight Saving for Electric Motor Rotors

Alvant says its aluminium matrix composite is proven to offer significant weight and performance benefits for rotor applications found in electric motors, flywheels, fans and turbines.