NetComposites
3M

NASA Completes Successful Battery of Tests on Composite Cryotank

09 September 2014

NASA Completes Successful Battery of Tests on Composite Cryotank

NASA has completed a complex series of tests on one of the largest composite cryogenic fuel tanks ever manufactured, bringing the aerospace industry much closer to designing, building, and flying lightweight, composite tanks on rockets.

“This is one of NASA’s major technology accomplishments for 2014,” said Michael Gazarik, NASA’s Associate Administrator for Space Technology. “This is the type of technology that can improve competitiveness for the entire U.S. launch industry, not to mention other industries that want to replace heavy metal components with lightweight composites. These tests, and others we have conducted this year on landing technologies for Mars vehicles, show how technology development is the key to driving exploration.”

According to NASA, one of the largest composite cryotanks ever built recently completed a battery of tests at NASA's Marshall Space Flight Center in Huntsville, Alabama, US. The tank was lowered into a structural test stand where it was tested with cryogenic hydrogen and structural loads were applied to simulate stresses the tank would experience during launch. The demanding series of tests on the 18-foot (5.5-meter) diameter tank were conducted inside a test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama, US. Engineers added structural loads to the tank to replicate the physical stresses launch vehicles experience during flight.

In other tests, NASA explains the tank successfully maintained fuels at extremely low temperatures and operated at various pressures.  Engineers filled the tank with almost 30,000 gallons of liquid hydrogen chilled to -423 degrees Fahrenheit, and repeatedly cycled the pressure between 20 to 53 pounds per square inch -- the pressure limit set for the tests.

“This is the culmination of a three-year effort to design and build a large high-performance tank with new materials and new processes and to test it under extreme conditions,” said John Vickers, Project Manager for the Composite Cryogenic Technology Demonstration Project. “We are a step closer to demonstrating in flight a technology that could reduce the weight of rocket tanks by 30% and cut costs by at least 25%.”

The composite rocket fuel tank, which arrived at Marshall on March 26 aboard NASA's Super Guppy airplane, was built by the Boeing Company near Seattle, US.

“Never before has a tank of this size been proven to sustain the thermal environment of liquid hydrogen at these pressures,” said Dan Rivera, Boeing Program Manager for the cryotank project.

“Our design is also more structurally efficient then predecessors. This is a significant technology achievement for NASA, Boeing and industry. We are looking at composite fuel tanks for many aerospace applications.”

Photo provided by NASA/David Olive






Related / You might like...

Lanxess Provides Thermoplastic Solutions for Drones

The Lanxess High Performance Materials (HPM) business unit presented a drone propeller made of short glass fibre reinforced Durethan polyamide 6 at Chinaplas 2018.

Haydale Supplies Graphene for Juno UAV

Haydale has supplied graphene enhanced prepreg for Juno, a 3 m wide composite-skinned unmanned aerial vehicle (UAV), which was revealed during Futures Day at the 2018 Farnborough Air Show.

Premium Aerotec, Faurecia and Solvay Launch Thermoplastic Composites Consortium

Premium Aerotec, Faurecia Clean Mobility and Solvay have launched the research group IRG CosiMo: Composites for Sustainable Mobility, which will focus on the development of materials and process technologies to enable the high volume production of thermoplastic composites for the aerospace and automotive markets.