NetComposites
Juniar Spraybooths

Rolo Bikes Creates the World’s Lightest and Stiffest Road Bike Frame Using HyperWorks

23 September 2014

Rolo Bikes has used Altair's computer-aided engineering (CAE) HyperWorks suite to design, optimise, and develop the world's lightest and stiffest road bike. 

Altair explains the objectives of the project were to optimise the frame to achieve world-leading performance for weight, stiffness and comfort; and to develop an efficient virtual testing process to analyse the performance of future bike frames both from Rolo and other partner companies.

According to Altair, in addition to the use of HyperWorks, Rolo Bikes’ engineers were supported by Altair ProductDesign, Altair's engineering services division, in the design, optimisation, and the virtual testing process of the bike.

Rolo Bikes states it had already created virtual test jigs to replicate the European Committee for Standardization (Comité Européen de Normalisation or CEN) tests as well as the Zedler stiffness tests using HyperWorks, and had correlated a baseline frame model to physical tests. The baseline model weighed 829g but was extremely difficult to manufacture. Initial virtual analysis of the baseline design highlighted several areas of concern where the frame was under particularly high stresses. The optimisation stage of the project wanted to address these high stress areas in a weight efficient way while ensuring a manufacturable design.

To optimise the carbon fibre frame, Altair ProductDesign claims it utilised a three-step approach, during which the shape, thickness, direction and location of each layer of composite material was fine-tuned until an optimum solution had been reached. At the end of this three-step process, HyperWorks was again utilised to analyse and validate the optimised frame against the CEN and Zedler tests. The resulting composite layup created a component that is manufacturable based upon Rolo’s meticulous hand layup construction process employed in its European based manufacturing centre, all within cost targets.

The composite optimisation process successfully reduced the weight of the frame from 829g to 792g. Additional material tweaks by Rolo’s manufacturing team reduced the weight even further resulting in a final weight of just 710g. The design met all performance and safety standards with the stiffness, durability and performance being enhanced significantly over the target values.

"We chose HyperWorks for our project because we think that it offers us the most powerful tools for our optimisation and development tasks within one suite,” said Adam Wais, CEO, Owner and Co-founder of Rolo Bikes. "In addition, the use of HyperWorks enabled us to develop our own simulation tools for virtual testing. When we realised that we could use additional engineering support and manpower in our development and optimisation process it was a natural choice for us to work with Altair ProductDesign, since the company's engineers are very familiar with HyperWorks and have tremendous expertise in designing and optimising composite materials. Working with Altair ProductDesign and using the HyperWorks suite has enabled us to develop the highest performance in the world with respect to weight, stiffness, and comfort. This project was completed in record time with close to no prototypes."

"We are delighted that Rolo Bikes chose HyperWorks and Altair ProductDesign to develop their exceptional bike," said Håkan Ekman, Managing Director Altair Northern Europe. "Altair boasts a long tradition in the development of CAE software and engineering services, especially in the area of optimisation. To work with Rolo Bikes on such an outstanding project was a great pleasure for our engineers and we are looking forward to extending this collaboration on future projects." 






comments powered by Disqus

Related / You might like...

Toho Tenax Develops Shock-Resistant Hybrid Prepreg

Toho Tenax is introducing a high-tensile, highly shock-resistant prepreg that incorporates carbon fibre developed for aerospace applications and carbon nanotubes (CNTs).

NTPT and EPFL Research Discontinuous Fibre Composite Tubes

NTPT is collaborating with the Ecole polytechnique fédérale de Lausanne - Swiss Centre of Technology (EPFL) and other partners to research discontinuous fibre composite tubes for high performance applications.

Hexcel Showcases Innovations for Sports Equipment at ISPO Munich

Hexcel is promoting its range of composite materials for skis, snowboards and other high performance winter sports equipment at ISPO Munich 2018 on 28-31 January.