NetComposites
Airtech

NanoMaster Project Optimises Processes and Up-Scaling for Graphene Delivery

23 September 2014

NanoMaster Project Optimises Processes and Up-Scaling for Graphene Delivery

As it enters its final phase, the NanoMaster Project is reporting exciting results related to graphene and expanded graphite production and the development of novel nanocomposite intermediates.

Over the last eighteen months, the project team states they have focused on optimising and up-scaling the processes for graphene and expanded graphite production and their subsequent compounding with a range of thermoplastics, in order to demonstrate industrial viability and to deliver sufficient quantities of nanocomposite intermediates for use in the final stages of the project.

According to the project team, as a result of this work, it can report that production of graphene and few-layer graphene has been scaled from 50g at the end of the first year to 2.5kg currently.  Production of expanded graphite and nano-graphite has also been optimised and up-scaled. A densification process was studied to help improve the feeding of these graphite and nano-graphite powders into compounding extruders and to reduce transportation volumes.

Alongside this, optimum lab-scale compounding extrusion parameters have been determined and simulations carried out, subsequently leading to the implementation of pilot-scale production.

A further important activity during stage two was the evaluation of competitor products and comparison with the NanoMaster materials, as Ben Hargreaves, Senior Project Manager at NetComposites, the projects lead partner, explains: “We evaluated the NanoMaster materials against a number of commercially available alternatives,  utilising a range of characterisation and analysis techniques. Of those evaluated, the NanoMaster materials were found to be highest quality (in terms of number of layers, presence of defects and uniformity of particle diameter) and able to impart greatest property enhancements to a range of polymers.”

Nanoparticle exposure monitoring has been carried out throughout the development work and detailed reports on the findings have been prepared. Building upon this information (and in combination with an on-going review of hazard literature), guidance on industrial Implementation of the newly developed graphenes, graphites and nanocomposites has been drawn up.

During the final eighteen months of the project, the team will continue to optimise nanocomposite processing parameters - both for conventional processes such as injection moulding and film extrusion; and for additive manufacturing processes, including selective laser sintering and fused deposition modelling.

The project is led by NetComposites, UK, and involves 12 other project partners: Philips Consumer Lifestyle, Holland, Imerys Graphite and Carbon, Switzerland, Röchling Automotive, Italy, Asociación de Investigación de Materiales Plásticos y Conexas, Spain, Aero Engine Controls, UK, Teknologisk Institut, Denmark, Promolding, Holland, Avanzare Innovacion Tecnologica, Spain, Master Build Prototype, France, The Institute of Occupational Medicine, UK, Create It Real Aps, Denmark, and LATI Industria Termoplastici, Italy.

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement n° 285718.






comments powered by Disqus

Related / You might like...

METYX Secures Investment for Hungary Expansion

METYX has concluded discussions with the Hungarian Investment Promotion Agency (HIPA) and secured a 50% matched government-funded incentive package to support a multi-million Euro investment project to expand METYX Hungary.

ACMA Champions Policies to Advance Composites in Infrastructure

At the American Composites Manufacturers Association (ACMA)'s third annual Infrastructure Day on 6-7 February 2018 34 ACMA members joined together to meet with over 100 Members of Congress and their staffs to advance legislation to drive investment in innovative material solutions for transportation, water and energy infrastructure.

Cevotec Offers Carbon Tape for Automated Fibre Placement Processes

Cevotec reports that cevoTape is individually manufactured and tailored to major automated fibre placement (AFP) processes, offering a new option for series production at reasonable economics.