NetComposites
Southern Manufacturing

European Project to Develop Multiscale Modelling Strategy to Simulate Impact on Aeronautical Composite Structures

13 May 2014

European Project to Develop Multiscale Modelling Strategy to Simulate Impact on Aeronautical Composite Structures

IMDEA Materials Institute has coordinated the JTI European Project, CRASHING with the aim to develop a novel multiscale simulation strategy to predict the mechanical behaviour of composite aeronautical structures under impact.  

According to IMDEA, CRASHING will lead to an important reduction in the number of physical tests required for aircraft certification and will reduce the development time of new structural components.

IMDEA explains the use of composite materials as principal structural elements in an aircraft require the complete understanding of their mechanical properties. In particular, when the composite structure is subjected to high frequency loading conditions such as impacts, phenomena such as wave propagation, strain rate dependencies, delamination, matrix cracking and fibre rupture need to be fully understood. This is crucial to obtain certification of aeronautical structures like those proposed within the Clean Sky - Green Regional Aircraft initiative.

IMDEA says that current numerical models are based on tests and technologies developed during the nineties in European R&T Programmes. Since then, significant progress has been achieved in the development of physically-based models and multiscale modelling strategies, which provide more accurate results and can be applied to different materials. In the CRASHING Project, the state-of-the-art in multiscale simulation of composites will be transferred to the numerical tools currently used by the aerospace industry for the simulation of the mechanical behaviour of composite structures. The project will be focused on composite materials used in current aircraft designs, as well as on innovative materials with potential application in the future.

Explaining the main objective of the CRASHING Project, IMDEA says a mulitiscale model should be developed that takes into account the physical mechanisms of damage at the different length scales. The multiscale approach describes systematically the material behaviour at ply, laminate and component levels. Final models of the multi-scale approach will be suitable for simulations of aircraft crash-landing, ditching, bird strike, ice impacts and, in general, situations where the aircraft is subject to high frequency dynamic loading. 





Share this story


Related / You might like...

Boeing Delivers First 787 Dreamliner for WestJet

Boeing has delivered the first of ten 787 Dreamliners to WestJet, marking the start of the airline's global expansion. Having long operated a fleet of Boeing single-aisle jets, WestJet will use the super-efficient, long-range 787-9 Dreamliner to profitably serve new international routes.

Web Industries’ Middlesex Plant Earns Nadcap Accreditation Covering Aerospace Composite Ply Cutting and Kitting Operations

The Middlesex production facility of Web Industries’ Aerospace market team has earned accreditation from Nadcap (the National Aerospace and Defense Contractors Accreditation Program) covering the facility’s composite cutting and kitting operations.

Rhodes Interform Develops Revolutionary New Process for Aerospace Industry

Group Rhodes, through its Rhodes Interform business, has developed a revolutionary new process that enables large monocoque components, particularly those produced by super plastic forming (SPF) from very thin material, to more accurately retain their shape on cooling.