NetComposites
Airtech

European Project to Develop Multiscale Modelling Strategy to Simulate Impact on Aeronautical Composite Structures

13 May 2014

European Project to Develop Multiscale Modelling Strategy to Simulate Impact on Aeronautical Composite Structures

IMDEA Materials Institute has coordinated the JTI European Project, CRASHING with the aim to develop a novel multiscale simulation strategy to predict the mechanical behaviour of composite aeronautical structures under impact.  

According to IMDEA, CRASHING will lead to an important reduction in the number of physical tests required for aircraft certification and will reduce the development time of new structural components.

IMDEA explains the use of composite materials as principal structural elements in an aircraft require the complete understanding of their mechanical properties. In particular, when the composite structure is subjected to high frequency loading conditions such as impacts, phenomena such as wave propagation, strain rate dependencies, delamination, matrix cracking and fibre rupture need to be fully understood. This is crucial to obtain certification of aeronautical structures like those proposed within the Clean Sky - Green Regional Aircraft initiative.

IMDEA says that current numerical models are based on tests and technologies developed during the nineties in European R&T Programmes. Since then, significant progress has been achieved in the development of physically-based models and multiscale modelling strategies, which provide more accurate results and can be applied to different materials. In the CRASHING Project, the state-of-the-art in multiscale simulation of composites will be transferred to the numerical tools currently used by the aerospace industry for the simulation of the mechanical behaviour of composite structures. The project will be focused on composite materials used in current aircraft designs, as well as on innovative materials with potential application in the future.

Explaining the main objective of the CRASHING Project, IMDEA says a mulitiscale model should be developed that takes into account the physical mechanisms of damage at the different length scales. The multiscale approach describes systematically the material behaviour at ply, laminate and component levels. Final models of the multi-scale approach will be suitable for simulations of aircraft crash-landing, ditching, bird strike, ice impacts and, in general, situations where the aircraft is subject to high frequency dynamic loading. 






comments powered by Disqus

Related / You might like...

Thai Flight Training Orders Spatial A320 Door Trainer

Thai Flight Training (TFT), a subsidiary of Thai Airways, recently ordered an Airbus A320 door trainer from Spatial Composite Solutions.

NTPT and EPFL Research Discontinuous Fibre Composite Tubes

NTPT is collaborating with the Ecole polytechnique fédérale de Lausanne - Swiss Centre of Technology (EPFL) and other partners to research discontinuous fibre composite tubes for high performance applications.

Gulf Aviation Academy Orders Third Simulator from Spatial

Gulf Aviation Academy (GAA) recently ordered a Boeing 787 door trainer from Spatial Composite Solutions, complete with Spatial’s virtual slide trainer.