NetComposites
Airtech

AnalySwift Partners with Altran to Link VABS with Optimisation Code for Wind Turbine Blades

07 January 2014

AnalySwift has partnered with Altran to release Altran’s upcoming optimisation code for the preliminary design of composite wind turbine blades.

AnalySwift explains it’s VABS and PreVABS software will play a key role in combination with other optimisation and mathematical tools developed in-house by Altran as part of their new optimisation code. Altran’s code, the company says, is a generalistic tool, and is based on aerodynamic and structural calculations. Still under development, it will include an optimisation loop to modify structural pre-design.

The code will address aerodynamics, structural modelling, and optimisation of emerging wind turbine blades. AnalySwift’s VABS and PreVABS software will interface with and complement Altran’s code. VABS, now  in version 3.7, to enable the rigorous modelling of complex composite slender structures, or “beams”, such as wind turbine blades, helicopter rotor blades, propellers, wing sections, and bridges.

PreVABS is a design-driven pre-processor to VABS. “AnalySwift is excited about the continued relationship with Altran, a leader in high-tech engineering consulting,” said Allan Wood, President and CEO of AnalySwift. “Researchers and engineers worldwide are actively using VABS for the efficient and accurate modelling of composite slender structures. In addition to its powerful analysis capabilities, VABS is also recognised for helping organisations get products getting to market more quickly, at a lower cost, and with a higher confidence in quality.” 

“Due to its versatility, VABScan model beams of any shape and a wide variety of materials,” commented Dr. Wenbin Yu, CTO of AnalySwift. “In fact,VABS can deal not only with arbitrary lay-ups, but also with isotropic, orthotropic, and general anisotropic materials. As such, VABS delivers the best available combination of accuracy, efficiency, and versatility.”

The company states that the unique technology underlying VABS renders it the first truly efficient high-fidelity modelling tool for composite slender structures, saving users many orders of magnitude in computing time relative to more complex and time-consuming 3D finite element analyses (FEA), without a loss of accuracy. Instead of choosing between accuracy and efficiency; engineers can now confidently design and analyse real structures with complex microstructures. For instance, structures as complex as composite rotor blades with hundreds of layers can be easily handled by a laptop computer. Analysis time can typically be reduced from several hours to just seconds. 





Share this story


Related / You might like...

Web Industries’ Middlesex Plant Earns Nadcap Accreditation Covering Aerospace Composite Ply Cutting and Kitting Operations

The Middlesex production facility of Web Industries’ Aerospace market team has earned accreditation from Nadcap (the National Aerospace and Defense Contractors Accreditation Program) covering the facility’s composite cutting and kitting operations.

Rhodes Interform Develops Revolutionary New Process for Aerospace Industry

Group Rhodes, through its Rhodes Interform business, has developed a revolutionary new process that enables large monocoque components, particularly those produced by super plastic forming (SPF) from very thin material, to more accurately retain their shape on cooling.

Innovative Manufacturing Solutions Halve Set-up Time for Composite Part Production

The combination of MSP’s NC-Checker and NC-PerfectPart software with Renishaw’s leading probing technology, is delivering significant cost and time savings for Quickstep Technologies’ composite manufacturing processes.