NetComposites
3M

AnalySwift Partners with Altran to Link VABS with Optimisation Code for Wind Turbine Blades

07 January 2014

AnalySwift has partnered with Altran to release Altran’s upcoming optimisation code for the preliminary design of composite wind turbine blades.

AnalySwift explains it’s VABS and PreVABS software will play a key role in combination with other optimisation and mathematical tools developed in-house by Altran as part of their new optimisation code. Altran’s code, the company says, is a generalistic tool, and is based on aerodynamic and structural calculations. Still under development, it will include an optimisation loop to modify structural pre-design.

The code will address aerodynamics, structural modelling, and optimisation of emerging wind turbine blades. AnalySwift’s VABS and PreVABS software will interface with and complement Altran’s code. VABS, now  in version 3.7, to enable the rigorous modelling of complex composite slender structures, or “beams”, such as wind turbine blades, helicopter rotor blades, propellers, wing sections, and bridges.

PreVABS is a design-driven pre-processor to VABS. “AnalySwift is excited about the continued relationship with Altran, a leader in high-tech engineering consulting,” said Allan Wood, President and CEO of AnalySwift. “Researchers and engineers worldwide are actively using VABS for the efficient and accurate modelling of composite slender structures. In addition to its powerful analysis capabilities, VABS is also recognised for helping organisations get products getting to market more quickly, at a lower cost, and with a higher confidence in quality.” 

“Due to its versatility, VABScan model beams of any shape and a wide variety of materials,” commented Dr. Wenbin Yu, CTO of AnalySwift. “In fact,VABS can deal not only with arbitrary lay-ups, but also with isotropic, orthotropic, and general anisotropic materials. As such, VABS delivers the best available combination of accuracy, efficiency, and versatility.”

The company states that the unique technology underlying VABS renders it the first truly efficient high-fidelity modelling tool for composite slender structures, saving users many orders of magnitude in computing time relative to more complex and time-consuming 3D finite element analyses (FEA), without a loss of accuracy. Instead of choosing between accuracy and efficiency; engineers can now confidently design and analyse real structures with complex microstructures. For instance, structures as complex as composite rotor blades with hundreds of layers can be easily handled by a laptop computer. Analysis time can typically be reduced from several hours to just seconds. 






Related / You might like...

Alvant Supports £28m Safran-Led Aircraft Landing Gear Project

Alvant has been appointed to work on a two-year, £28 million project titled Large Landing Gear of the Future, which aims to deliver a 30% weight reduction and assist the aerospace industry’s drive to reduce fuel consumption and carbon emissions.

3D Printed Drone Prototype Wins Red Dot 2018 Design Award

Hexadrone’s 3D printed Tundra prototype, manufactured by CRP Technology via laser sintering (LS) technology using Windform SP and Windform XT 2.0 carbon composite materials, has won the Red Dot Award 2018 in the drone category.

Norco Composites Invests in New Equipment

UK company Norco Composites has invested in a larger spray booth and a new cutting and kitting machine to enable the company to increase productivity in line with growing demand from its marine customers.