NetComposites
Airtech

DIAB Supplies Core Materials for the World’s Largest Turbine Blade

23 July 2013

DIAB says the 83.5m long wind-turbine is the world's largest to date.

In a joint project between SPP Technology and Samsung Heavy Industries, the first prototype is currently exposed to thorough testing at the Fraunhofer Institute in Germany.

The record-breaking turbine blade is part of a project to develop a 7MW offshore wind-turbine with a 171.2m diameter rotor. The new design will be used in the construction of twelve units in an 84MW offshore installation in the Korea Straits. A collaboration between Samsung and the Korea Southern Power Corporation, the installation is targeted to start in 2015, making it South Korea's first offshore wind energy project.

The first prototype for the blade was designed and manufactured by SSP Technology. Focus at the company lies on wind-turbine blade technology, mould manufacture and blade development, combining product quality and long lifecycles with low weight and increased stability.

DIAB says when developing any wind-turbine there are many things to consider. The load capacity, aerodynamics, structural performance and material options have to blend into an optimal combination that delivers a low-weight product with uniform quality and high productivity. Tooling and testing are of vital importance to achieve this. When developing the geometry for the extraordinary large blade SSP Technology used aerodynamic and 3-D CAD modelling. It was finally decided that the blade would be constructed using a flat-back profile and a structural blade design concept of a carbon and glass fibre hybrid, materials able to provide the necessary strength, buckling and deflection resistance.

Having worked with DIAB for many years prior to this project, SSP Technology's CTO Flemming Sørensen knew where they would find the material and knowledge they needed to produce the blade. DIAB supplied all core materials used, which were ProBalsa150 and Divinycell H80. The materials came with distinctive grooving to enable the DIAB method of core infusion. Each blade skin was produced in a female mould using a combination of vacuum assisted resin transfer moulding (VARTM), pre-preg and hand lamination.

With support from DIAB and within the requested 15 months and targeted budget, SSP Technology was able to produce the first complete prototype at the company's production site in Denmark. The blade was then transported to the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Bremerhaven, Germany, where it is currently undergoing testing and evaluation to prove the quality of the blade, including the SSP spar box and the root design developed by SSP Technology. The tests, which will be verified by the Norwegian firm DNV, include two months of static testing and a 25-year life-cycle fatigue test, which will last approximately six-months. After the successful completion of the tests, the production of the three remaining prototype blades will begin.

YouTube: www.youtube.com/watch?v=VTGA--zhkYE






Related / You might like...

Compcut 200 Increases Testing Productivity at Renault Sport Racing

Sharp & Tappin has installed and commissioned a Compcut 200 composite plate saw at Renault Sport Racing in Enstone, Oxfordshire, UK.

Composites Europe 2018 Highlights Contributions of Composites to Sport

Applications for composites in the sports and leisure sector will be showcased by various exhibitors at Composites Europe in Stuttgart, Germany, on 6-8 November.

Alvant Supports £28m Safran-Led Aircraft Landing Gear Project

Alvant has been appointed to work on a two-year, £28 million project titled Large Landing Gear of the Future, which aims to deliver a 30% weight reduction and assist the aerospace industry’s drive to reduce fuel consumption and carbon emissions.