Research Team Investigates Carbon Nanotube Composites for Structural Health Monitoring

09 October 2012

An interdisciplinary team of researchers at the University of Delaware is developing a novel structural health monitoring system that could avert disasters such as the collapse of the the I-35W Bridge over the Mississippi River in Minneapolis attributed to a design deficiency that resulted in a gusset plate failing during on-going construction work, which killed 13 people and injured 145.

Erik Thostenson and Thomas Schumacher, both affiliated faculty members in the University of Delaware Center for Composite Materials (CCM), have received a three-year $300,000 grant from the National Science Foundation to investigate the use of carbon nanotube composites as a kind of “smart skin” for structures.

CCM explains that in preliminary research, the two found that a carbon nanotube hybrid glass-fibre composite attached to small-scale concrete beams formed a continuous conductive skin that is exceptionally sensitive to changes in strain as well as to the development and growth of damage. “This sensor can either be structural, where the layer of the fibre composite adds reinforcement to a deficient or damaged structure, or non-structural, where the layer acts merely as a sensing skin,” says Schumacher, who brings to the project knowledge of structural mechanics and health monitoring of large-scale structures.

Thostenson, whose expertise lies in materials processing and characterisation for sensor applications, explains that because the nanotubes are so small, they can penetrate the polymer-rich area between the fibres of individual yarn bundles as well as the spaces between the plies of a fibre composite.

“The nanotubes become completely integrated into advanced fiber composite systems, imparting new functionality without altering the microstructure of the composite,” he says. Schumacher says the approach will address a major drawback of current SHM systems, which can cover only a finite number points.

“Selection of critical areas for monitoring remains subject to the owner’s expertise,” he explains. “The distributed sensing capability of the system we’re developing significantly increases the chance of capturing hidden or localized micro-damage that can lead to catastrophic failure if not detected early.” Thostenson points out that a key advantage of this innovative sensor is that it can be bonded to existing structures of any shape or built into new structures during the fabrication and construction processes.

Based on their preliminary results, the researchers will now address such issues as sensor processing, characterisation, and modelling as well as testing of components and complete structures.

Thostenson credits CCM with facilitating the kind of interdisciplinary approach that brought him and Schumacher together on the project. “It’s truly a 50/50 collaboration that capitalises on our complementary expertise,” he says.

The two joke, though, about the specimen they tested at CCM during their exploratory work. “It was the smallest specimen I ever tested,” says Schumacher, but the largest one Erik ever tested.”

Related / You might like...

Cobra Publishes Surfboard Case Study from 40 Years Book

Cobra International is celebrating its 40th year and has commissioned a book that will look at 40 key projects and 40 key people that were integral to the company’s growth. ‘Klaus Simmer and The King Cobra: A breakthrough in surfboard design and production technology’ is an extract article from this book and a breakthrough composites product for Cobra, establishing its presence as a manufacturer of high performance windsurf boards and creating global visibility for the Cobra brand.

TFP Showcases Advanced Nonwovens at China Composites Expo 2018

Technical Fibre Products will showcase its Optiveil nonwovens at China Composites Expo in Shanghai on 5-7 September.