NetComposites
Thermwood

Case Western Reserve University Researchers build Carbon Nanotube Reinforce Wind Turbine Blade

06 September 2011

A Case Western Reserve University researcher has built a prototype blade that is substantially lighter and eight times tougher and more durable than currently used blade materials.
Marcio Loos, a Post-Doctoral Researcher in the Department of Macromolecular Science and Engineering, works with colleagues at Case Western Reserve, and investigators from Bayer MaterialScience, and Molded Fiber Glass comparing the properties of new materials with the current standards used in blade manufacturing.
According to Case, Loos built the world’s first polyurethane blade reinforced with carbon nanotubes, ensuring the composite that was scoring best on preliminary tests could be moulded into the right shape and maintain properties. They say that using a small commercial blade as a template, Loos manufactured a 29-inch blade that is substantially lighter, more rigid and tougher. “The idea behind all this is the need to develop stronger and lighter materials which will enablemanufacturing of blades for larger rotors,” Loos said.

Case explains that in order to achieve the expansion expected in the market for wind energy, turbines need a bigger share of the wind. The heavier the blades, the more wind is needed to turn the rotor. That means less energy is captured. And the more the blades flex in the wind, the more they lose the optimal shape for catching moving air, so, even less energy is captured. They say lighter, stiffer blades enable maximum energy and production.  

“Results of mechanical testing for the carbon nanotube reinforced polyurethane show that this material outperforms the currently used resins for wind blades applications,” said Ica Manas-Zloczower, Professor of Macromolecular Science and Engineering and Associate Dean in the Case School of Engineering. Loos is working in the Manas-Zloczower lab where she and Chemical Engineering Professor Donald L. Feke, a Vice Provost at the university, serve as advisors on the project.
Case claim that in a comparison of reinforcing materials, the researchers found carbon nanotubes are lighter per unit of volume than carbon fibre and aluminium and had more than 5 times the tensile strength of carbon fibre and more than 60 times that of aluminium. They say fatigue testing showed the reinforced polyurethane composite lasts about eight times longer than epoxy reinforced with fibreglass. The new material was also about eight times tougher in delamination fracture tests. The performance in each test was even better when compared to vinyl ester reinforced with fibreglass, another material used to make blades. The new composite also has shown fracture growth rates at a fraction of the rates found for traditional epoxy and vinyl ester composites.
Loos and the rest of the team are continuing to test for the optimal conditions for the stable dispersion of nanotubes, the best distribution within the polyurethane and methods to make that happen. The functional prototype blades built by Loos, which were used to turn a 400-watt turbine, will be stored in case’s laboratory, Manas-Zloczower said. “They will be used to emphasise the significant potential of carbon nanotube reinforced polyurethane systems for use in the next generation of wind turbine blades.”





Share this story


Related / You might like...

Cobra International Exhibits Product Range at CAMX 2018

Cobra International will showcase a range of composite products at CAMX 2018, including carbon fibre components for the automotive, transportation, marine, water sports and luxury sectors.

Prodrive Develops Process for Recyclable Thermoplastic Composites

UK company Prodrive Composites has developed a process for manufacturing recyclable composite components that can satisfy future end-of-life requirements without any compromise in the performance of the original parts. The company says the P2T (Primary to Tertiary) process not only simplifies recycling, but endows a composite material with the potential to fulfil three or more useful lifetimes.

Elemental RP1 Sports Car Showcases Capabilities of Tailored Fibre Placement

Designers at Elemental Motor have utilised tailored fibre placement (TPF) to extend the use of carbon composites in its RP1 sports car.