NetComposites
Advanced Engineering 2018

Innovative High-Temperature Material System to Provide Better Crew Protection

05 March 2010

The Lockheed Martin led team developing the Orion crew exploration vehicle has achieved a major technology milestone by completing fabrication of the world's largest heat shield structure.

The shield is five meters (16.4 feet) in diameter and is critical to the protection of the spacecraft and its crew from the extreme temperatures experienced during re-entry. The work was completed at Lockheed Martin's composite development facility in Denver, Colo.

The crew exploration vehicle is at the height of its development phase, which has spurred several new technologies and innovations such as a cutting edge high-temperature composite material system. The new system was developed by the Lockheed Martin Orion thermal protection system team in partnership with TenCate Advanced Composites, a leading supplier of aerospace thermoset and thermoplastic prepregs. TenCate's composite materials are used in commercial aircraft, radomes, satellites, general aviation, oil and gas, medical and high-end industrial applications.

""In addition to the technology advancement, we achieved a $10 million cost savings and improved the project schedule by 12 months through the innovative tooling, materials and fabrication processes the team put into action,"" explained Cleon Lacefield, Lockheed Martin vice president and Orion program manager.

The new resin system was developed over an 18-month period during which thousands of coupons were tested in extreme environments that simulated a ballistic re-entry from a lunar mission. The team verified that the thermal insulator on the outside of the composite material can be thinner due to the higher temperature capability, resulting in improved mass optimization of the Orion spacecraft.

The new resin system enables much simpler and more efficient manufacturing techniques compared to other high temperature resin systems. This resin system has the potential to be used in a wide range of commercial applications including aircraft, automobiles, launch vehicles, payload fairings, and re-entry vehicles.

The expansive heat shield will be applied to the Orion ground test article, which is the first full-sized, flight-like test article for Orion being built at the Michoud Assembly Facility in New Orleans, La. The ground test article is designed to serve as a production pathfinder to validate the flight vehicle production processes and tools. When completed, the crew module will be tested on the ground in equivalent flight-like environments, including static vibration, acoustics and water landing loads. This early high fidelity testing is necessary to correlate sizing models for all subsystems on the vehicle.






Related / You might like...

80-Year-Old Massachusetts Bridge Gets FiberSPAN FRP Deck

The Massachusetts Department of Transportation (MassDOT) selected a lightweight FiberSPAN fibre reinforced polymer (FRP) bridge deck, manufactured by Composite Advantage, for the Rugg Bridge on Route 57.

Alvant Supports £28m Safran-Led Aircraft Landing Gear Project

Alvant has been appointed to work on a two-year, £28 million project titled Large Landing Gear of the Future, which aims to deliver a 30% weight reduction and assist the aerospace industry’s drive to reduce fuel consumption and carbon emissions.

3D Printed Drone Prototype Wins Red Dot 2018 Design Award

Hexadrone’s 3D printed Tundra prototype, manufactured by CRP Technology via laser sintering (LS) technology using Windform SP and Windform XT 2.0 carbon composite materials, has won the Red Dot Award 2018 in the drone category.