NetComposites
Thermwood

NLR and TU Delft Improve Composite Damage Tolerance

18 June 2010

The National Aerospace Laboratory NLR and Delft University of Technology (TU Delft) in The Netherlands have jointly developed a new fibre architecture with improved damage tolerance for use with a fibre placement machine.

The AP-PLY fibre architecture combines the mechanical properties of unidirectional laminates with the higher resistance to impact damage of woven fabrics in an automated composites manufacturing process.

Delaminations seriously decrease the compressive strength of this material after impact. Laminates made from woven fabric show in general more beneficial impact behaviour than laminates with unidirectional layers, but their manufacturing process is harder to automate.

Instead of fibre placing parallel fibre bands next to each other, room is left between bands. A second series of interspaced fibre bands is placed at an angle with respect to the first series. The remaining gaps are subsequently filled up. Adjacent plies are thus more interconnected and delamination damage is contained in a smaller area. Preliminary test results show significant improvement in compression after impact strength and smaller delaminations. Barely visible impact damage is reached at a lower impact energy level.

Manufacturing and testing trials carried out at NLR show that weight reduction of approximately 10% seems feasible, compared to a traditional layered structure. Research will continue and the material will be optimised further. As compression after impact strength is an important design driver, it is believed that even greater reductions are possible, ultimately leading to more efficient composite structures in aircraft and other transport applications.

A patent has been applied for the results of this research.






comments powered by Disqus

Related / You might like...

Thai Flight Training Orders Spatial A320 Door Trainer

Thai Flight Training (TFT), a subsidiary of Thai Airways, recently ordered an Airbus A320 door trainer from Spatial Composite Solutions.

NTPT and EPFL Research Discontinuous Fibre Composite Tubes

NTPT is collaborating with the Ecole polytechnique fédérale de Lausanne - Swiss Centre of Technology (EPFL) and other partners to research discontinuous fibre composite tubes for high performance applications.

Gulf Aviation Academy Orders Third Simulator from Spatial

Gulf Aviation Academy (GAA) recently ordered a Boeing 787 door trainer from Spatial Composite Solutions, complete with Spatial’s virtual slide trainer.