NetComposites
Advanced Engineering 2018

Berkeley Scientists Report Universal Method for Creating Nanoscale Composites

05 April 2010

Researchers at Berkeley Lab’s Molecular Foundry, in collaboration with researcher at the University of California, Berkeley, have shown how nanocomposites with desired properties can be designed and fabricated.

This is achieved by first assembling nanocrystals and nanorods coated with short organic molecules, called ligands, which are then replaced with clusters of metal chalcogenides, such as copper sulphide. As a result, the clusters link to the nanocrystal or nanorod building blocks and help create a stable nanocomposite. The team has applied this scheme to more than 20 different combinations of materials, including close-packed nanocrystal spheres for thermoelectric materials and vertically aligned nanorods for solar cells.

“We’re just starting to understand how combining materials on the nanoscale can open up new possibilities for electronic properties and efficient energy technologies,” said Delia Milliron, Director of the Inorganic Nanostructures Facility at the Molecular Foundry. “This new process for fabricating inorganic nanocomposites gives us unprecedented ability to tune composition and control morphology.” Delia Milliron, of Berkeley Lab’s Molecular Foundry, led the development of a universal method by which designer nanomaterials can be created on-demand. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

“The beauty of our method is not just the flexibility of compositions that can be achieved, but the ease with which this can be done. No specialized equipment is required, a variety of substrates can be used and the process is scalable,” said Ravisubhash Tangirala, a Foundry post-doctoral researcher working with Milliron.

Portions of this work at the Molecular Foundry were supported by DOE’s Office of Science.






Related / You might like...

LANXESS Strengthens R&D for Aqueous Polyurethane Dispersions

LANXESS will open a new applications development and technical services (AD & TS) laboratory for polyurethane dispersions (PUDs) in Latina, Italy. This will be capable of supporting market needs in a variety of coatings and adhesives applications in leather and textile finishing, plastic, glass and metal substrates coatings, as well as glass fibre sizing. 

Compcut 200 Increases Testing Productivity at Renault Sport Racing

Sharp & Tappin has installed and commissioned a Compcut 200 composite plate saw at Renault Sport Racing in Enstone, Oxfordshire, UK.

Composites Europe 2018 Highlights Contributions of Composites to Sport

Applications for composites in the sports and leisure sector will be showcased by various exhibitors at Composites Europe in Stuttgart, Germany, on 6-8 November.