NetComposites
Attwater

MU Engineers Develop Safer, Blast-Resistant Glass

18 September 2009

University of Missouri researchers are developing and testing a new type of blast-resistant glass that they hope will be thinner and lighter than conventional technology and less vulnerable to small-scale explosions.

Conventional blast-resistant glass is made with laminated glass that has a plastic layer between two sheets of glass. MU researchers are now replacing the plastic layer with a transparent composite material made of glass fibres that are embedded in plastic.

The glass fibres add strength because, unlike plastic, they are only about 25 microns thick, which is about half the thickness of a typical human hair, and leave little room for defects in the glass that could lead to cracking.

“The use of a transparent composite interlayer provides us the flexibility to change the strength of the layer by changing the glass fibre quantity and its orientation,” said Professor Sanjeev Khanna, Associate Professor of Mechanical and Aerospace Engineering in the MU College of Engineering

According to scientists at MU, they aim to cut down the width of protective glass which ranges from one inch to half an inch in thickness. “The glass we are developing is less than one-half of an inch thick. Because the glass panel will be thinner, it will use less material and be cheaper than what is currently being used,” added Professor Khanna.

In tests, researchers are observing how the glass reacts to small-scale explosions caused by a grenade or hand-delivered bomb. They tested the glass by exploding a small bomb within close proximity of the window panel. After the blast, the glass panel was cracked but had no holes in the composite layer.

“The new multilayered transparent glass could have a wide range of potential uses if it can be made strong enough to resist small-scale explosions,” Khanna said. “The super-strong glass also may protect residential windows from hurricane winds and debris or earthquakes. Most hurricane damage occurs when windows are punctured, which allows for high-speed wind and water to enter the structure.”

The research is funded by a $250,000 grant from the Science and Technology Directorate of the U.S. Department of Homeland Security. Future tests will be done on larger pieces of glass that are equivalent to standard window size, and researchers could potentially test the glass on large-scale explosions.

Please visit the following link to see a video demonstration of the glass’ resistant properties - http://umsystem.edu/video#blast






Related / You might like...

Alvant Supports £28m Safran-Led Aircraft Landing Gear Project

Alvant has been appointed to work on a two-year, £28 million project titled Large Landing Gear of the Future, which aims to deliver a 30% weight reduction and assist the aerospace industry’s drive to reduce fuel consumption and carbon emissions.

3D Printed Drone Prototype Wins Red Dot 2018 Design Award

Hexadrone’s 3D printed Tundra prototype, manufactured by CRP Technology via laser sintering (LS) technology using Windform SP and Windform XT 2.0 carbon composite materials, has won the Red Dot Award 2018 in the drone category.

Norco Composites Invests in New Equipment

UK company Norco Composites has invested in a larger spray booth and a new cutting and kitting machine to enable the company to increase productivity in line with growing demand from its marine customers.