NetComposites
Airtech

MU Engineers Develop Safer, Blast-Resistant Glass

18 September 2009

University of Missouri researchers are developing and testing a new type of blast-resistant glass that they hope will be thinner and lighter than conventional technology and less vulnerable to small-scale explosions.

Conventional blast-resistant glass is made with laminated glass that has a plastic layer between two sheets of glass. MU researchers are now replacing the plastic layer with a transparent composite material made of glass fibres that are embedded in plastic.

The glass fibres add strength because, unlike plastic, they are only about 25 microns thick, which is about half the thickness of a typical human hair, and leave little room for defects in the glass that could lead to cracking.

“The use of a transparent composite interlayer provides us the flexibility to change the strength of the layer by changing the glass fibre quantity and its orientation,” said Professor Sanjeev Khanna, Associate Professor of Mechanical and Aerospace Engineering in the MU College of Engineering

According to scientists at MU, they aim to cut down the width of protective glass which ranges from one inch to half an inch in thickness. “The glass we are developing is less than one-half of an inch thick. Because the glass panel will be thinner, it will use less material and be cheaper than what is currently being used,” added Professor Khanna.

In tests, researchers are observing how the glass reacts to small-scale explosions caused by a grenade or hand-delivered bomb. They tested the glass by exploding a small bomb within close proximity of the window panel. After the blast, the glass panel was cracked but had no holes in the composite layer.

“The new multilayered transparent glass could have a wide range of potential uses if it can be made strong enough to resist small-scale explosions,” Khanna said. “The super-strong glass also may protect residential windows from hurricane winds and debris or earthquakes. Most hurricane damage occurs when windows are punctured, which allows for high-speed wind and water to enter the structure.”

The research is funded by a $250,000 grant from the Science and Technology Directorate of the U.S. Department of Homeland Security. Future tests will be done on larger pieces of glass that are equivalent to standard window size, and researchers could potentially test the glass on large-scale explosions.

Please visit the following link to see a video demonstration of the glass’ resistant properties - http://umsystem.edu/video#blast






comments powered by Disqus

Related / You might like...

Thai Flight Training Orders Spatial A320 Door Trainer

Thai Flight Training (TFT), a subsidiary of Thai Airways, recently ordered an Airbus A320 door trainer from Spatial Composite Solutions.

NTPT and EPFL Research Discontinuous Fibre Composite Tubes

NTPT is collaborating with the Ecole polytechnique fédérale de Lausanne - Swiss Centre of Technology (EPFL) and other partners to research discontinuous fibre composite tubes for high performance applications.

Gulf Aviation Academy Orders Third Simulator from Spatial

Gulf Aviation Academy (GAA) recently ordered a Boeing 787 door trainer from Spatial Composite Solutions, complete with Spatial’s virtual slide trainer.