NetComposites
Advanced Engineering 2018

ASTM Composite Materials Subcommittees at Work on Proposed Polymer Matrix Standards

20 May 2009

ASTM Composite Materials Subcommittees at Work on Proposed Polymer Matrix Standards ASTM Subcommittees D30.05 on Structural Test Methods and D30.06 on Interlaminar Properties are both working on proposed new standards that involve fibre reinforced polymer matrix composites.

The subcommittees are under the jurisdiction of ASTM International Committee D30 on Composite Materials.

Subcommittee D30.05 is currently developing a proposed new standard, ASTM WK22348, Test Method for Transverse Shear Strength of Fiber-Reinforced Polymer Matrix Composite Bars.

“Concrete pavements have joints in them to accommodate thermal movements” says Russell Gentry, Georgia Institute of Technology, and a co-chair of D30.05. “Large diameter dowel bars are used to bridge across these joints to prevent transverse movement of pavements. The proposed test method captures this sort of loading on the bar.” Gentry notes that there are many other applications for composite material bars loaded in this way.

According to Gentry, primary users of ASTM WK22348 will be manufacturers of composite material rebar, research laboratories, highway engineers, glued-laminated lumber producers and structural engineers.

Delamination growth, or the growth of cracks in between layers in laminated composite materials, can occur during usage (for example, low-velocity impact), from unexpected overloads of a structure or from an extended lifetime of normal service loadings.

A proposed new ASTM standard will be part of a series of test methods developed by D30.06 that characterize the delamination toughness of laminated composites.

Two test methods already developed by D30.06 that deal with this type of testing are ASTM D5528, Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, and ASTM D6671/D6671M, Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites.

According to Barry Davidson, a professor in the mechanical and aerospace engineering department at Syracuse University, and a D30 member, the need for a standard dealing exclusively with Mode II loading is a high priority. The subcommittee is now addressing Mode II loading with the development of proposed standard WK22949, Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites Using the End-Notched Flexure (ENF) Test.

“Delamination growth represents a critical failure mode in structures fabricated from fiber reinforced polymer matrix composites, so there is a concerted effort to develop the tools and techniques to make sure that this does not occur,” says Davidson. “A key component of the approach is the determination of a materials resistance to delamination growth, or toughness.”

Davidson says that toughness assessments using ASTM WK22949 will be used in the development of new materials, for selecting among materials for structural applications, for screening the quality of new batches of material to be used in production and to support structural design and analysis efforts.






Related / You might like...

Solvay and Bell Sign Rotorcraft Supply Agreement

Solvay has signed a ten-year agreement for the supply of composites and adhesives to be used across Bell's military and commercial rotorcraft programmes, including the Bell 429, 407, 505, 525, V-22, and UH-1.

SGL Carbon Celebrates Opening of Fibre Placement Centre

SGL Carbon and Fraunhofer IGCV have officially opened the Fibre Placement Centre (FPC) at SGL's site in Meitingen, Germany. Compositence, BA Composites and the Chair for Carbon Composites at the Technical University of Munich have also joined the alliance, and Coriolis Group and Cevotec are planning to come on board as partners.

Victrex and Exeter University Partner on PAEK Additive Manufacturing

With the aim developing a broader platform for additive manufacturing (AM) technologies, the University of Exeter, UK, and Victrex, have formed a strategic partnership to introduce next-generation polyaryletherketone (PAEK) polymers and composites while improving the performance of the underlying AM processes.