NetComposites
Thermwood

Northrop Grumman Joint Passes NASA Test

23 December 2009

A new method of joining composite structures implemented by Northrop Grumman Corporation has successfully passed a series of structural tests, paving the way for the use of composites in future spacecraft.

The joint design, made in collaboration with the NASA Engineering and Safety Center (NESC) Composite Crew Module team, was used to mate two segments of NASA's Composite Crew Module (CCM) demonstrator.

Test results proved that the mating process retains compartment pressure and withstands external loads at twice the level normally experienced in flight. In addition to this, the new process provides mass and cost savings due to the elimination of mate joint fasteners, more efficient subsystems installation and no requirement for an autoclave during mate.

The CCM is a high fidelity technology demonstration article that represents the inner pressurized shell for the Orion crew module.

""This is a major step forward for the use of composites in future missions,"" said Gene Fraser, vice president of Advanced Programs and Technology for Northrop Grumman Aerospace Systems. ""Our engineering and technology development efforts on this composite structure will enable future manned habitats for the Moon and beyond.""

""The splice region performed exactly as our analysis predicted,"" said Mike Kirsch, NASA CCM program manager. ""We tracked the strain across the joint and verified that the non-autoclave cured composite was fully capable of handling the pressure and vehicle loads in the crew cabin.""

Conducted at the NASA Langley Research Center in Hampton, Va., the Northrop Grumman team also installed an advanced fiberoptic strain-sensing system on the CCM, which monitored more than 3,500 channels of data in real time during the test to monitor the splice joint's performance.

Additional tests measured the CCM's performance during ultimate loads for launch, on-orbit, and abort scenarios. NASA is now proceeding with post-impact load conditions to verify the robust residual strength characteristics of the CCM habitat structure. The test program will be complete next spring.

In recognition of the company's participation in the CCM splice fabrication effort, NESC, which is leading development of the CCM, presented Northrop Grumman's engineer Dawson Vincent with a Technical Excellence Award in October.






Related / You might like...

Alvant Supports £28m Safran-Led Aircraft Landing Gear Project

Alvant has been appointed to work on a two-year, £28 million project titled Large Landing Gear of the Future, which aims to deliver a 30% weight reduction and assist the aerospace industry’s drive to reduce fuel consumption and carbon emissions.

3D Printed Drone Prototype Wins Red Dot 2018 Design Award

Hexadrone’s 3D printed Tundra prototype, manufactured by CRP Technology via laser sintering (LS) technology using Windform SP and Windform XT 2.0 carbon composite materials, has won the Red Dot Award 2018 in the drone category.

Norco Composites Invests in New Equipment

UK company Norco Composites has invested in a larger spray booth and a new cutting and kitting machine to enable the company to increase productivity in line with growing demand from its marine customers.