ORNL Researchers Win Six R&D 100 Awards

10 July 2008

Researchers at the U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) have won six R&D 100 Awards for innovative technologies, including composites.

“This is yet the latest example of how the Department of Energy and our national laboratories are continuing to demonstrate world-class leadership in innovation, as we enhance our energy security, national security, and economic competiveness,” said U.S. Secretary of Energy Samuel W. Bodman. “On behalf of the department, I would like to congratulate all of our employees who have earned R&D 100 awards and in particular this year's winners.”

R&D Magazine issues the awards in recognition of the year’s most significant technological innovations. This year’s awards were announced Monday, June 30.

“This is an impressive example of the diversity and depth of the laboratory’s research talent,” said ORNL Director Thom Mason. “These awards demonstrate our ability to translate breakthroughs in fundamental science into applications that address important technological challenges.”

This year’s awards bring ORNL to a total of 140 since the awards’ inception 45 years ago. ORNL has won more R&D 100 awards than any other DOE laboratory and is second only to General Electric.

Researchers from ORNL received recognition for the following inventions in the field of composites:

(1) Cratos V Nano-Wool, developed and submitted jointly by Roland Seals of Babcock & Wilcox Technical Services Y-12 and Paul Menchhofer, Vinod Sikka and Fred Montgomery of the Materials Science and Technology Division.

Cratos V is a new process for producing high-purity carbon nanotubes quickly and at a fraction of the typical cost. The resulting high-strength lightweight Nano-Wool may be used to reinforce cutting tools, grinding wheels and metal composites, or to produce new polymers that conduct electricity. The introduction of the Cratos V technology decreases production cost, making nanotubes significantly less expensive than other sources. The advance is due to the development of a new high-productivity catalyst in combination with a simplified process that yields very pure nanotubes.

Funding for the project came from Y-12’s Plant Directed Research and Development program.

(2) Laser-induced fluorescence composite heat damage detector, developed and submitted jointly by Chris Janke and Cliff Eberle of the Materials Science and Technology Division, Curt Maxey and John Storey of the Energy & Transportation Science Division, Art Clemons of the National Security Directorate, and Walt Fisher, Eric Wachter and Josh Fisher of Galt Technologies.

The heat damage detector provides rapid and accurate heat damage assessments of fiber-reinforced polymer matrix composites found in military and commercial aircraft. Composites have a high strength-to-weight ratio, increasing aircraft fuel efficiency without a compromise in safety. However, they are vulnerable to heat damage, which can cause significant degradation in the materials’ properties. The detector is the first of its kind that does not require destruction of the sample under inspection, reducing the cost of identifying and repairing heat-damaged composites ten-fold. The system is also lightweight and portable.

Work on the detector was sponsored by the Office of Naval Research.

comments powered by Disqus

Related / You might like...

McLaren Automotive Inaugurates Carbon Composites Technology Centre

The £50 million McLaren Composites Technology Centre (MCTC) nearing completion near Sheffield, UK, was inaugurated on 16 January.

Scott Bader Targets Japanese Automotive Market

Scott Bader is exhibiting its Crestabond structural adhesives at the Automotive Lightweight Technologies Expo in Tokyo, Japan, on 17-19 January 2018.

Fibrelite Highlights Potential for Composites in UK Rail Industry

The use of composites within the rail industry is predicted to grow by up to 40% between 2015 and 2020 according to the Composites Leadership Forum, reports Fibrelite, a UK manufacturer of composite trench covers.