NetComposites
Advanced Engineering 2019

Tweaking the Conductivity of Nanotube Composites

11 February 2008

New measurements by scientists at the National Institute of Standards and Technology (NIST) show that the electrical properties of a composite can be tuned from being a conductor to a non-conductor simply by changing processing conditions..

Carbon nanotubes—sheets of graphite rolled up into nanoscale hollow cylinders—are under intense scrutiny for a wide range of materials applications. The NIST study* shows how the conductivity and dielectric properties of these mixtures depend on flow and how they change once flow has stopped. These property changes have relevance to the process design of these materials in a long list of potential applications for conducting plastics including transparent electrodes, antennas, electronic packaging, sensors, automotive paint, anti-static fuel hoses and aircraft components.

The NIST researchers augmented a standard instrument, a shear rheometer, normally used for viscosity measurements, to simultaneously measure conductivity and dielectric properties Using this “rheo-dielectric spectrometer,” they discovered that the conductivity of the nanocomposite dramatically decreases with increasing flow rate, effectively changing the material from a conductor to an insulator. This extraordinary sensitivity of the conductivity (and other properties) to flow is prevalent near a characteristic CNT concentration where an interpenetrating CNT network first forms. Surprisingly, once the flow is removed, they found that the nanocomposite reverts back to its original conductivity.

Based on these measurements, the NIST team proposed a theoretical model that successfully accounts for these dramatic effects. This model quantitatively predicts the observed conductor-insulator transition and is useful for optimizing and controlling the properties of these new polymer-nanotube composites.

* J. Obrzut, J.F. Douglas, S.B. Kharchenko and K. B. Migler. Shear-induced conductor-insulator transition in melt-mixed polypropylene-carbon nanotube dispersions. Physical Review B 76, 195420-2007. Nov. 15, 2007.





Share this story


Related / You might like...

Cygnet Texkimp Uses High-payload Collaborative Robotics in Breakthrough Handling System

Fibre handling expert and custom machinery manufacturer Cygnet Texkimp has developed an AGV-mounted mobile handling system using a collaborative robot capable of lifting packages of fibre weighing up to 35kg.

Bindatex Celebrates 10-year Partnership

Bindatex is celebrating 10 years of partnership and delivering 50 tonnes of multiaxial fabrics to a global composites reinforcement manufacturer. The specialist slitting service enables the manufacturer to supply its customers with material in a wide variety of widths.

Innovation Award at JEC Forum Chicago 2019

Every year, JEC rewards the best cutting-edge and ingenious projects using and reinventing the use of composites in different categories, recognising the innovation and the full potential of composites.