NetComposites
Thermwood

Canadian Universities Get $6 Million to Build Green BioCars

26 March 2007

Canadian provincial government is investing nearly $6 million in the BioCar Initiative, a multi-university project led by the University of Guelph.

It involves 16 scientists at Guelph and the universities of Toronto, Waterloo and Windsor. They are combining their research strengths and efforts to improve the development and delivery capacity of biomaterials for the automotive industry.

“The BioCar initiative aligns some of the most distinctive innovation capacity in Ontario,” said Alan Wildeman, vice-president (research). “It involves a consortium of universities working with two of the largest industries in Ontario, the automotive industry and the agricultural industry. This combination provides an unprecedented opportunity for the province to be seen as a major contributor to the global biobased industrial revolution that is occurring.”

Support for the project will come from the Ontario Research Fund's Research Excellence Program and was announced today in Toronto by Premier Dalton McGuinty, minister of research and innovation.

Guelph’s role will include creating new industrial crops that can be turned into composite materials used to make interior automobile components.

“It’s a whole new way of looking at agriculture and a whole new relationship between the sector and Ontario’s economy,” said plant agriculture professor Larry Erickson, one of the lead researchers. “It opens the door for a lot more approaches and utilization of crops. Now, agriculture is more than meat and potatoes; it’s car parts, building materials, fuel and more.”

It’s been known for years that plant material can be used to make components in the manufacturing process, but it’s only recently that society recognized the need to do this commercially.

For the past 100 years, research efforts and resources have not been focused on using crops in this way because there’s been an abundant supply of low-cost petroleum, said Erickson. “All of that has changed now. We have to catch up and make up for lost time and develop alternative technology.”

The BioCar project literally starts in the field, with Guelph looking at the raw agricultural materials and studying crop genetics. It then moves to processing and separating the biological feedstock in collaboration with the University of Toronto, to engineering composite resins and polymers for application to automotive parts at Waterloo, to finally incorporating the new products into automobiles at Windsor.

“Talk about a value-added chain of research,” said Erickson. “The BioCar Initiative is a continual stream of research and development with incremental improvements made at each point in the value chain. The whole is greater than the sum of its parts.”

He added that research into bioproducts has often been challenging because these new materials are currently not economically competitive with synthetic products. But the four universities joining together and creating an integrated scientific team changes things, he said.

Mohini Sain, a University of Toronto researcher, is the co-principal investigator for the project. Other key Guelph researchers involved are Ian Tetlow, Michael Emes, Istvan Rajcan, Peter Pauls and Gary Ablett.






comments powered by Disqus

Related / You might like...

ACMA Champions Policies to Advance Composites in Infrastructure

At the American Composites Manufacturers Association (ACMA)'s third annual Infrastructure Day on 6-7 February 2018 34 ACMA members joined together to meet with over 100 Members of Congress and their staffs to advance legislation to drive investment in innovative material solutions for transportation, water and energy infrastructure.

Composite Sculpture Fronts Australian Shopping Centre

Shoppers visiting the newly redeveloped Halls Head Central Shopping Centre will be greeted by a 3.5 m x 2.5 m core composite spiral ribbon representing the logo of one of the centre's owners.

KraussMaffei adds Rebar Pultrusion System to TechCentre

KraussMaffei is expanding its expertise in the field of pultrusion, the process for continuously manufacturing fibre reinforced plastic (FRP) components, with the commissioning of a second pultrusion system at its TechCentre in Munich, Germany.