NetComposites
Attwater

Electro-Thermal Ice Protection System Completes Icing Tunnel Tests

19 June 2007

The GKN/Ultra electro-thermal Wing Ice Protection System (WIPS) for the Boeing 787 Dreamliner, which will be the first all electro-thermal anti-ice / de-ice system to be qualified for use on a civil airliner, has successfully completed a 30 month program of icing tunnel tests in the Boeing Research Aircraft Icing Tunnel (BRAIT).

In itself, this program of ground-based, simulated tests represents a major development in FAA certification procedure. Devised by Boeing, GKN Aerospace and Ultra, and for the first time, approved by the FAA, the emphasis has been to thoroughly and comprehensively test the WIPS system in simulated circumstances, pre-flight trails. This has reduced the need for expensive and extremely time consuming flight trials, and has provided a more extensive and thoroughly monitored test activity than is possible in the air. The BRIAT program is a recognised part of the process of certifying the WIPS to FAA Part 25 Appendix C.

With BRIAT trials now complete, the WIPS enters a rigorous but reduced flight trial program to prove performance in the air and is expected to gain certification in Qtr2 2008. Overall, the Boeing 787 WIPS is scheduled to be designed, tested and qualified by the Boeing /GKN and Ultra WIPS team in 40 months from contract award in December 2004.

Electro-thermal ice protection systems remove the need to bleed hot air from the engine, which is the traditional approach to protect against in-flight icing. The system works by embedding electro-thermal heater mats into the surface to be protected. These mats comprise an advanced composite material pad which contains a heater element. An electronic controller (developed by Ultra Electronics) monitors the condition of each surface individually. Compared to traditional hot gas systems, heat can be locally targeted and finely controlled to avoid icing in very specific areas making electro-thermal systems compatible with today's advanced high performance critical wing designs. This increases the performance and endurance of the airframe and reduces fuel consumption significantly. The simplicity of the system also reduces maintenance tasks, helping to limit aircraft downtimes. The image shows surface preparation prior to application of Electro-Thermal Heating Element, taking place at the GKN Aerospace facility in Luton, England





Share this story


Related / You might like...

Breakthrough Technology from Heraeus Noblelight for Aerospace

Heraeus Noblelight, presents together with German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt; DLR) its breakthrough humm3 heating technology for composite materials at JEC World 2019.

SFS Intec Partners With TxV to Re-engineer Aircraft Bracket Using Thermoplastic Composite

To achieve valuable weight and cost savings within the quality and price-sensitive air transportation industry, SFS intec is partnering with TxV Aero Composites in the re-design of an aircraft storage bin bracket.

Total Composite Solutions Launches FAR 25.853 Compliant Epoxy Prepreg Solution

Total Composite Solutions (TCS) brings a market leading epoxy prepreg solution to the aerospace interiors sector.