NetComposites
Advanced Engineering 2018

Modular Construction Methods for Large-Scale Composite Structures

11 February 2007

Improving production technologies for composite components was the aim of a research project conducted by the Institute of Polymer Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). The findings led to a surprising result.

Although fibre composites are well established today in the realms of aeronautics and aerospace, their manufacturing technologies still make them difficult to use in industrial applications and for mass production. In the global marketplace, the labour-intensive methods predominantly used in their production are leading to increasing competition from low-wage locations. Given this situation, it was deemed necessary to examine and improve manufacturing technologies, particularly where these are used for large-scale structures such as in the automotive industry or wind-power plants.

While in many areas composite components are produced by labour-intensive hand lay-up processes, environmental legislation and cost pressures are compelling manufacturers to turn increasingly to closed mould processes, such as infusion technology. In this method, the reinforcing fibres are impregnated with resin under a vacuum bag. Infusion technology presents considerable challenges, particularly in the case of light laminates and complex geometries. These were subjected to practical examination during the project in order to increase processing safety.

Anomalies in the flow properties of various resins awoke the curiosity of researchers at the Institute of Polymer Engineering and led them to perform basic examination of the wetting characteristics of the individual fibres. The experimental determination of the surface energy of various resins also met with interest from resin manufacturers. It proved possible to correlate surface energy to a variety of different flow mechanisms. Quantitative determination of the wetting characteristics of fibres will eventually provide a missing link in the prediction of flow properties, which are currently described in terms of viscosity and permeability only.

Using these findings in a real product was an incentive that the engineers and designers at the Institute of Polymer Engineering could not resist. In close collaboration with partners from industry, a demonstration model - Tender 08 – was developed at the Institute. This reflects how cooperation between design, modern manufacturing processes and innovative concepts in lightweight construction, coupled with an energy-efficient power system can result in an attractive and marketable product.






Related / You might like...

Cobra Publishes Surfboard Case Study from 40 Years Book

Cobra International is celebrating its 40th year and has commissioned a book that will look at 40 key projects and 40 key people that were integral to the company’s growth. ‘Klaus Simmer and The King Cobra: A breakthrough in surfboard design and production technology’ is an extract article from this book and a breakthrough composites product for Cobra, establishing its presence as a manufacturer of high performance windsurf boards and creating global visibility for the Cobra brand.

ZSK's Technology Showcase Demonstrates TFP Applications

ZSK will hold its bi-annual technology showcase on 21-22 September 2018 at its Krefeld, Germany, headquarters. The Embroidery Technology Show assembles more than 25 exhibitors from around the world to discuss emerging trends in the embroidery manufacturing industry and demonstrate the latest products produced using techniques such as tailored fibre placement (TFP) or smart textiles.

Solvay and Bell Sign Rotorcraft Supply Agreement

Solvay has signed a ten-year agreement for the supply of composites and adhesives to be used across Bell's military and commercial rotorcraft programmes, including the Bell 429, 407, 505, 525, V-22, and UH-1.