NetComposites
Advanced Engineering 2018

Stable Polymer Nanotubes May Have a Biotech Future

10 February 2006

Scientists at the National Institute of Standards and Technology (NIST) have created polymer nanotubes that are unusually long (about 1 centimetre) as well as stable enough to maintain their shape indefinitely.

Described in a new paper in Proceedings of the National Academy of Sciences,* the NIST nanotubes may have biotechnology applications as channels for tiny volumes of chemicals in nanofluidic reactor devices, for example, or as the “world’s smallest hypodermic needles” for injecting molecules one at a time.

Carbon nanotubes are of keen interest in nanotechnology research, especially for making ultrastrong fibres and other structures. Nanotubes made from other materials are used for transport in biochemical applications, but are typically fragile and usually collapse within a few hours. The NIST team developed processes for extending the shelf life of polymer nanotubes—considered essential for commercial applications—and forming sturdy nanotube network structures.

First the researchers made tiny, fluid-filled spherical containers with bi-layer membranes consisting of polymers with one end that likes water and one end that does not. (These fluid-filled containers are a spin-off of liposomes, artificial cells with fatty membranes used in cosmetics and for drug delivery.) The researchers made the membranes stretchy by adding a soap-like fluid to change the polymer membranes’ mechanical properties. Then they used “optical tweezers” (highly focused infrared lasers) or tiny droppers called micropipettes to pull on the elastic membranes to form long, double-walled tubes that are less than 100 nanometres in diameter.

A chemical was added to break bonds between atoms in one section of the polymers and induce new bonds to form between the two different sections, forming a rigid “cross-linked” membrane. The nanotubes are then snipped free from the parent cell with an “optical scalpel” (highly focused ultraviolet laser pulse). The nanotubes maintain their shape even after several weeks of storage, and can be removed from the liquid solution and placed on a dry surface or in a different container. The optical tweezers can be used to custom build nanotube network structures. The work was supported in part by the Office of Naval Research.

*J.E. Reiner, J.M. Wells, R.B. Kishore, C. Pfefferkorn, and K. Helmerson. 2006. Stable and robust polymer nanotubes stretched from polymersomes. Proceedings of the National Academy of Sciences. Published online Jan. 23, 2006.





Share this story


Related / You might like...

Austrak, Laing O’Rourke and USQ Partner on Composite Rail Technology

Australian organisations Austrak, Laing O’Rourke and the University of Southern Queensland (USQ) have joined forces to develop polymer composite solutions for bridge transoms in a $10 million project titled Polymer Composite Transoms for Rail Bridge Deck Replacement (CompTrans).

ACMA Presses Congress to Advance Defence and Transportation Issues

The American Composites Manufacturers Association (ACMA) led a Transportation and Defence Fly-In, 25-26 September 2018, during which ACMA members and staff met with more than 75 congressional offices and several key decision makers from federal agencies.

EPTA Highlights Opportunities for Composites in Rail

As the rail sector looks to new technologies to enable it to answer sustainability, performance and cost challenges, applications for pultruded composites are set to grow, according to a new report from the European Pultrusion Technology Association (EPTA). Lightweight, high performance, durable composites offer energy efficient solutions with lower environmental impact and reduced through-life costs in rolling stock and rail infrastructure.