NetComposites
Airtech

Stirring Force Important for Nanotubes

23 July 2006

NIST researchers have mapped the relationship between stirring force and nanotube arrangement, an advance key to the processing of new nanocomposite materials.

In a paper for Physical Review Letters, they explain how the amount of force applied while mixing carbon nanotube suspensions influences the way the tiny cylinders ultimately disperse and orient themselves. In turn, the final arrangement of the nanotubes largely dictates the properties of the resultant materials.

Measuring only a few nanometers in diameter (the width of a handful of atoms), carbon nanotubes possess many superior properties that make them highly desirable additives in composites, a class of engineered materials made by blending polymers and fibers or by combining other types of unlike materials. Mixed in polymeric materials, carbon nanotubes can provide incredible strength, toughness and electrical conductivity. The trouble is, nanotubes stick to each other and form networks that tend to stay fixed in place. Apply enough force, the networks will flow but usually end up in tangled clumps. The resultant nanocomposites are difficult to mold or shape, and their properties fall short of expectations.

In an elegantly simple result, NIST researchers Erik Hobbie and Dan Fry found that networks of carbon nanotubes respond predictably to externally applied force. The networks also showed behavior reminiscent of more conventional materials that align spontaneously under the forces of Brownian motion—the random motion of particles in a fluid famously described mathematically by Einstein.

The response was so predictable that the scientists mapped out the relationship in the form of a phase diagram, the materials science equivalent of a recipe. Using their “phase diagram of sticky nanotube suspensions,” other researchers can estimate the order that will result when applying a certain amount of force when mixing a polymer fluid with a particular concentration of nanotubes. The recipe can be used to prevent entanglement and to help achieve the nanotube arrangement and orientation associated with a desired set of properties.

Details from E.K. Hobbie and D.J. Fry, 2006. Nonequilibrium phase diagram of sticky nanotube suspensions. Physical Review Letters, July 21.






comments powered by Disqus

Related / You might like...

Cevotec Introduces SAMBA System for Prepreg

Cevotec has announced that a SAMBA Series Patch Placement system is now available for processing thermoset prepreg material.

NTPT and Richard Mille Confirm Supply and R&D Agreements

North Thin Ply Technology (NTPT) and Richard Mille have signed a long-term collaboration and exclusive supply agreement. The new multi-year contract will see NTPT develop and provide its lightweight thin ply materials exclusively to Richard Mille for horology, jewellery and luxury stationery items.

Toho Tenax Develops Shock-Resistant Hybrid Prepreg

Toho Tenax is introducing a high-tensile, highly shock-resistant prepreg that incorporates carbon fibre developed for aerospace applications and carbon nanotubes (CNTs).