NetComposites
Airtech

Nanotube Foams Flex and Rebound

02 December 2005

A new study on carbon nanotubes suggests that they can act like “super-compressible” springs, opening the door to foam-like materials for just about any application where strength and flexibility are needed.

The research shows that films of aligned multiwalled carbon nanotubes can flex and rebound in response to a force, but that these nanotube foams maintain their resilience even after thousands of compression cycles.

“Carbon nanotubes display an exceptional combination of strength, flexibility, and low density, making them attractive and interesting materials for producing strong, ultra-light foam-like structures,” says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute.

Ajayan at Rensselaer and a team of researchers at the University of Hawaii at Manoa and the University of Florida subjected films of vertically aligned nanotubes to a battery of tests, demonstrating their impressive strength and resilience.

“These nanotubes can be squeezed to less than 15 percent of their normal lengths by buckling and folding themselves like springs,” says Anyuan Cao, who did much of the work as a postdoctoral researcher in Ajayan’s lab and is now assistant professor of mechanical engineering at the University of Hawaii at Manoa. “After every cycle of compression, the nanotubes unfold and recover, producing a strong cushioning effect.”

The thickness of the nanotube foams decreased slightly after several hundred cycles, but then quickly stabilized and remained constant, even up to 10,000 cycles. When compared with conventional foams designed to sustain large strains, nanotube foams recovered very quickly and exhibited higher compressive strength, according to the researchers. Throughout the entire experiments, the foams did not fracture, tear, or collapse.

And their intriguing properties do not end there. Nanotubes also are stable in the face of extreme chemical environments, high temperatures, and humidity — all of which adds up to a number of possible applications, from flexible electromechanical systems to coatings for absorbing energy.

The foams are just the latest in a long line of nanotube-based materials that have been produced through collaborations with Ajayan’s lab, all of which have exhibited tantalizing properties. Ajayan and researchers from the University of Hawaii at Manoa recently developed tiny brushes with bristles made from carbon nanotubes, which could be used for tasks that range from cleaning microscopic surfaces to serving as electrical contacts. And in collaboration with scientists from the University of Akron, Ajayan and his team created artificial gecko feet with 200 times the sticking power of the real thing.






Related / You might like...

Compcut 200 Increases Testing Productivity at Renault Sport Racing

Sharp & Tappin has installed and commissioned a Compcut 200 composite plate saw at Renault Sport Racing in Enstone, Oxfordshire, UK.

Electric GT’s Tesla P100DL Features Bcomp Flax Fibre Technologies

Electric GT Holdings and SPV Racing recently unveiled the race-ready version of the EPCS V2.3 Tesla P100DL at Circuit de Barcelona-Catalunya. The car features lightweight body parts made using Bcomp's ampliTex and powerRibs natural fibre composite reinforcement products, contributing to a 500 kg weight reduction over the road edition.

Codem Composites Supports Sahara Force India F1 Team

UK company Codem Composites has provided key bodywork components to support the F1 team Sahara Force India.