NetComposites
Juniar Spraybooths

NJIT Chemists Modify Carbon Nanotubes Using Microwaves

22 April 2005

Researchers at New Jersey Institute of Technology have discovered a novel method of changing the chemical characteristics of carbon nanotubes by heating them in a closed vessel microwave oven.

Somenath Mitra, PhD, professor of chemistry and environmental sciences, and Zafar Iqbal, PhD, also a professor of chemistry and environmental sciences, discussed their findings last week at the 229th national meeting of the American Chemical Society (ACS) at the Hyatt Regency Hotel, San Diego.

The pair, aided by doctoral student Yubing Wang, have written “Microwave-Induced, Green and Rapid Chemical Functionalization of Single-Walled Carbon Nanotubes” to be published in a forthcoming issue of a technology journal.

“We understand ourselves to be the first in the world to have discovered this method,” said Mitra. “The beauty is that our method is green and clean. We use no toxic material and reduce the reaction times from hours—on occasion even days—to three minutes.""

Iqbal noted that the method costs much less than others currently used. ""Plus, the solubility of our carbon nanotubes are several times higher than any other researcher has yet reported in this short amount of time.” Solubility is the most essential characteristic of carbon nanotubes since researchers must be able to dissolve them to see them work their magic.

With a microwave oven hitting temperatures of 250 degrees Celsius, the researchers can chemically modify the tubes. Such a temperature is closer to radiation treatment than the output of a kitchen microwave oven. Since the reactions are fast, the nanotubes are not damaged or structurally modified.

""A carbon nanotube is just carbon,"" said Mitra. ""The surprise for us is that it's difficult to make nanotubes react with anything. They are like diamonds—very, very inert. They don’t react and they don’t dissolve in water. But, if you can change their chemical characteristics as we have done using our method, we see them transform right before our eyes.”

Once the tiny, microscopic tubes are chemically altered, they become soluble in common solvents like water and alcohol, and new kinds of films or coatings can be produced. The tubes can also be formulated into paints and plastic nanocomposites. The functionalized nanotubes become more useful than the pristine ones because the functionalized groups can be tailored for specific applications.

“Nanotubes are opening new vistas for products and design,” added Mitra. “For example, the space shuttle includes components of lightweight carbon or carbon-polymer composites. The military especially likes these materials because ultimately they will allow for the development of lightweight equipment.”






Related / You might like...

ZSK's Technology Showcase Demonstrates TFP Applications

ZSK will hold its bi-annual technology showcase on 21-22 September 2018 at its Krefeld, Germany, headquarters. The Embroidery Technology Show assembles more than 25 exhibitors from around the world to discuss emerging trends in the embroidery manufacturing industry and demonstrate the latest products produced using techniques such as tailored fibre placement (TFP) or smart textiles.

Online Monitoring System Detects Milling Damage to Carbon Fibre Structures

Parth Rawal, a scientist at the Fraunhofer Institute for Manufacturing Technology and Applied Materials (IFAM), Stade, Germany, has been presented with the MT Aerospace Innovation Award for his master thesis Sensor Based Online Monitoring System for Detection of Milling Defects on CFRP Structures. 

RAMPF Supports Manufacture of AeroWagen Carbon Fibre Parts

Carbon fibre parts for the Callaway AeroWagen sports car were manufactured using RAMPF’s RAKU TOOL MB-0600 polyurethane board and RAKU TOOL EL-2203 / EH-2970 resin infusion system.