NetComposites
Attwater

New Advanced Anti-Ballistic Composite Material Developed by Ballistics Research

19 April 2005

Ballistics Research, Inc., of Rome, Georgia has developed a new composite polymer material to offer improved protection against attack.

The material, dubbed Advanced Anti-Ballistic Compound, or AABC, is a new, patent-pending, composite polymer material with a very high strength - to- weight ratio. The company claim that it is capable of stopping and safely absorbing projectiles from small arms fire and every kind of conventional (non-nuclear) explosive device. In testing, AABC has proven its effectiveness against the .50 calibre BMG, a heavy military machine gun round previously referred to as ""unstoppable"".

AABC is said to weigh less than most other viable protective materials with the company asserting that it's the only known material that actually increases in strength under attack. While other materials degrade under attack, AABC absorbs projectiles into itself, building density and mass, and becoming increasingly resistant to assault.

In a publicly available white paper on the material, AABC is also listed as being fire resistant. It does not support combustion, but can be made fire proof if desired. The paper also states that the material is impervious to petrochemicals, salt water, and UV rays. Because AABC encapsulates and contains bullets and other projectiles, it prevents lead and other toxins from escaping into the environment. The material itself leaches no toxins and is not damaging to the environment, according to the company.

Though it may be produced in any form or shape in which its properties are desired, AABC offers additional unique advantages when in the form of the Three-Dimensional Interlocking Protective System, or 3-D IPS, also a development of Ballistics Research.

Interlocking cubic modules made from AABC, the patent-pending ""building blocks"" of the 3-D IPS, are produced in virtually any size.

Each module interlocks on six sides with any other cube of the same size, affording speed of assembly and endless flexibility in configuration. No tools or formal instructions are required for assembly, and every cube of the same size is identical to all its mates; There are no special corner modules or end caps.

Utilizing a true three-dimensional, six-sided interlocking system, the IPS cubes form extremely strong structures that may be built to any desired size and configuration, with walls of any thickness. The system's structural integrity is ""ram proof,"" impervious even to ramming with cars or trucks. After use, the modules are easily disassembled for storage or transportation for reuse.

The 3-D IPS may be used to shield bunkers, buildings, pipelines, pump stations — any critical need equipment or installation that requires protection from ballistic or explosive attack. Military units with a need for permanent, semi-permanent or highly mobile physical security are likely to find the modules valuable and convenient. Existing buildings are easily and quickly secured with the 3-D IPS, and the system is adaptable for new construction as well.

Ballistics Research were particularly guarded when probed as to the nature of the materials or the processes used, primarily due to the patent for the material still pending.

The image shows an AABC block of 12"" thickness which has safely absorbed well over 5,000 rounds from various firearms, including 2,500 rounds of M-16 armour piercing, 2,500 rounds of AK-47 armour piercing, many rounds from a .30 cal. belt-fed machine gun, some 12-gauge shotgun slugs and others. The block remains just as viable for protection as it was before the first round was fired.






Related / You might like...

Composites Europe 2018 Highlights Contributions of Composites to Sport

Applications for composites in the sports and leisure sector will be showcased by various exhibitors at Composites Europe in Stuttgart, Germany, on 6-8 November.

EconCore Highlights Lightweighting Benefits of Honeycomb Panels in Transportation

ThermHex Waben and EconCore will exhibit at the IAA Commercial Vehicles exhibition in Hannover, Germany, on 20-27 September 2018.

Composites in Sport 2018 Publishes Conference Programme

The programme has been announced for the second Composites in Sport Conference and Exhibition, being held at Loughborough University, UK, on 3-4 October 2018.