NetComposites
Thermwood

US Research to Develop Carbon Fibre Magnet for Next Generation Spacecraft

18 July 2004

US researchers are developing a strong and lightweight superconductor magnet made from carbon fibre that could provide engine thrust for the next generation of spacecraft.

The US military is backing the technology as a means of propulsion for a satellite or deep space probe.

Powerful electromagnets can be used to confine plasma, then direct and expel the very high-energy hot gas for thrust. A carbon fibre magnet would be significantly lighter and stronger than conventional high-power superconductor electromagnets made from niobium or titanium in a copper matrix.

Prof. David Young and colleagues at the Department of Physics and Astronomy at Louisiana State University can synthesise a layer of superconductor directly on to carbon fibres which are seven microns wide.

'It makes for a very lightweight, strong and thin superconducting wire,' said Young. It could potentially be wound into a coil to create a large magnetic field. 'You can get carbon fibre of an indefinite length, so in principle we could make superconducting fibres that are miles long,' he said.

Young said lightweight carbon fibre magnets will be easier to transport into orbit. The carbon fibre coils will also be stronger once in space.

'The coils will experience very large forces in space,' said Young. 'In order to keep the coils of a conventional magnet together, you have to have a pretty substantial support structure. This tends to add large amounts of weight. If you make these magnets with carbon fibre you already have that structure.'

The superconductor material used so far, a magnesium carbon nickel compound, has proved to be unsuitable for space travel because of its low transition temperature. The LSU scientists are attempting to coat >the carbon fibres with a magnesium boron compound that would operate in deep space temperatures.





Share this story


Related / You might like...

AMRC Works With Prodrive to Accelerate Composites Recycling Challenge

One of the most respected and successful names in motorsport is working with lightweighting and materials researchers at the AMRC to advance its processes for manufacturing recyclable composite components that extend useful lifetimes and reduce tooling costs.

‘Inspired from Life, We Reinforce Life’ Says Kordsa’s New Campaign

Kordsa, operating in tire, construction reinforcement and composites technologies market with its mission ‘We Reinforce Life’, has launched a new campaign with the slogan ‘Inspired from life, we reinforce life’.

Chomarat Invests in its Coatings & Films Business: New Extruder, New Graining Line

Chomarat is developing its Coatings & Films business at its French sites. The Group has just acquired an extruder and a graining line to increase its production capacities and develop new, more efficient solutions, particularly in the field of TPO (polyolefin thermoplastics).