NetComposites
Airtech

Carbon Nanofibre Researchers Win International Award

21 June 2005

CSIRO and the NanoTech Institute of the University of Texas at Dallas have won the 2005 Avantex Innovation Prize for their breakthrough discovery of how pure carbon nanotubes can be spun into strong, flexible, electrically conductive yarns.

At a gathering on Monday of more than 20,000 scientists, technologists and industrialists from around the world, the scientists were presented the New Materials Innovation Prize of the Avantex International Forum for Innovative Textiles.

Following the discovery of nanotubes, a vigorous international research effort began to develop carbon nanotube production techniques targeted at patentable applications that exploit their extraordinary properties.

Pending patents, co-owned by UTD and CSIRO, describe the nanotube yarn spinning process and applications in artificial muscles, protective clothing, thermal heat pipes, sensors, electron field emitters, ultra-high intensity lamps, displays, structural composites, supercapacitors, batteries, fuel cells and electronic textiles. These and related pending patents in the nanotechnology area will be offered for license in November.

Based on their research into published information about the fibres, a team of CSIRO Textile and Fibre Technology researchers, led by Ken Atkinson, began work in 2002 to show that carbon nanotubes could act like conventional fibres by responding to 'twist' and being capable of self-locking into a yarn.

Mr Atkinson presented the team's finding to researchers at the NanoTech Institute, in November 2003 and later demonstrated that the nanotube forests grown at UTD could be hand twisted into a short length of yarn only a fraction of the width of a human hair. Yet this yarn was capable of supporting the weight of a pen.

NanoTech Institute Director, Dr Ray Baughman, says further refinement of the spinning process could lead to the production of nanotube yarns suitable for manufacturing high-value commercial products.

“These might eventually range from artificial muscles, electronic textiles, antiballistic clothing, satellite tethers, filaments for high intensity x-ray and light sources, and yarns for energy storage and generation that are weavable into textiles,” Dr Braughman says.

The research that led to the New Materials Innovation Prize was funded by the Defense Advanced Research Projects Agency, an agency of the United States Department of Defense, NASA, the Air Force Office of Scientific Research, the Texas Advanced Technology Program, the Robert A. Welch Foundation and the Strategic Partnership for Research in Nanotechnology (SPRING).






Related / You might like...

Compcut 200 Increases Testing Productivity at Renault Sport Racing

Sharp & Tappin has installed and commissioned a Compcut 200 composite plate saw at Renault Sport Racing in Enstone, Oxfordshire, UK.

Electric GT’s Tesla P100DL Features Bcomp Flax Fibre Technologies

Electric GT Holdings and SPV Racing recently unveiled the race-ready version of the EPCS V2.3 Tesla P100DL at Circuit de Barcelona-Catalunya. The car features lightweight body parts made using Bcomp's ampliTex and powerRibs natural fibre composite reinforcement products, contributing to a 500 kg weight reduction over the road edition.

Codem Composites Supports Sahara Force India F1 Team

UK company Codem Composites has provided key bodywork components to support the F1 team Sahara Force India.