NetComposites
Airtech

Carbon Nanofibre Researchers Win International Award

21 June 2005

CSIRO and the NanoTech Institute of the University of Texas at Dallas have won the 2005 Avantex Innovation Prize for their breakthrough discovery of how pure carbon nanotubes can be spun into strong, flexible, electrically conductive yarns.

At a gathering on Monday of more than 20,000 scientists, technologists and industrialists from around the world, the scientists were presented the New Materials Innovation Prize of the Avantex International Forum for Innovative Textiles.

Following the discovery of nanotubes, a vigorous international research effort began to develop carbon nanotube production techniques targeted at patentable applications that exploit their extraordinary properties.

Pending patents, co-owned by UTD and CSIRO, describe the nanotube yarn spinning process and applications in artificial muscles, protective clothing, thermal heat pipes, sensors, electron field emitters, ultra-high intensity lamps, displays, structural composites, supercapacitors, batteries, fuel cells and electronic textiles. These and related pending patents in the nanotechnology area will be offered for license in November.

Based on their research into published information about the fibres, a team of CSIRO Textile and Fibre Technology researchers, led by Ken Atkinson, began work in 2002 to show that carbon nanotubes could act like conventional fibres by responding to 'twist' and being capable of self-locking into a yarn.

Mr Atkinson presented the team's finding to researchers at the NanoTech Institute, in November 2003 and later demonstrated that the nanotube forests grown at UTD could be hand twisted into a short length of yarn only a fraction of the width of a human hair. Yet this yarn was capable of supporting the weight of a pen.

NanoTech Institute Director, Dr Ray Baughman, says further refinement of the spinning process could lead to the production of nanotube yarns suitable for manufacturing high-value commercial products.

“These might eventually range from artificial muscles, electronic textiles, antiballistic clothing, satellite tethers, filaments for high intensity x-ray and light sources, and yarns for energy storage and generation that are weavable into textiles,” Dr Braughman says.

The research that led to the New Materials Innovation Prize was funded by the Defense Advanced Research Projects Agency, an agency of the United States Department of Defense, NASA, the Air Force Office of Scientific Research, the Texas Advanced Technology Program, the Robert A. Welch Foundation and the Strategic Partnership for Research in Nanotechnology (SPRING).





Share this story


Related / You might like...

Huntsman PU Composite Technologies Take Centre Stage at Gent Design Exhibition

Composite products, based on polyurethane technologies from global chemical company Huntsman, are taking centre stage at a design exhibition at the Design Museum Gent, Belgium.

MoPaHyb Final Symposium in Pfinztal Consortium Led by Dieffenbacher Celebrates Project’s Successful Conclusion

In late November, the 14 project partners in the MoPaHyb consortium developing a modular production plant for hybrid high-performance components wrapped up their successful efforts with a two-day symposium in Pfinztal, Germany.

Metal Matrix Composites Deliver 40 Percent Weight Saving for Electric Motor Rotors

Alvant says its aluminium matrix composite is proven to offer significant weight and performance benefits for rotor applications found in electric motors, flywheels, fans and turbines.