Looking for our consultancy, conferencing, training or innovation services? Visit netcompositesenterprise.com

NetComposites Now
HIPA

Queen’s Expert Leads International Study to Improve Safety of Carbon Fibre Aircraft and Vehicles

07 February 2017

Queen’s Expert Leads International Study to Improve Safety of Carbon Fibre Aircraft and Vehicles

Researchers at Queen’s University Belfast (QUB) has developed state-of-the-art simulation tools which will help to improve the safety of the latest generation of carbon fibre airplanes, formula one racing cars and future lightweight family cars.  

Leading a €4m European study, Professor Brian Falzon, who holds the Royal Academy of Engineering – Bombardier Chair in Aerospace Composites at Queen’s University, is working with experts and industry leaders across Europe, including Bombardier Aerospace Belfast, McLaren-Honda F1 and Fiat to develop safer and more efficient ways to use lightweight carbon fibre composites in their designs.

In a drive to improve performance and save money through fuel efficiency, QUB explains that engineers are moving away from using traditional metals and now rely on lightweight carbon fibre composites. These are currently used in the fuselage and wings of the Boeing's 787 Dreamliner and the Airbus's A350, in the wings of the Bombardier C-Series planes, in the structure of racing cars and in some high-end road vehicles.  

However, it says that there are strict regulatory procedures in place and rigorous safety testing is required before these designs can enter service, which can be costly and can limit designers in trying new things.  

Professor Falzon says that this ground-breaking research at Queen’s will now allow companies in the aerospace, automotive and rail industries to fully test new designs virtually, which will rule out any safety concerns without having to incur huge costs in physically testing these designs. Through the project, researchers will further explore the development of new generations of composite materials, using nanotechnology, which could improve safety even further.

He explained, “At Queen’s, we are training the next generation of researchers in this area and have developed a cutting-edge computer system which uses virtual testing to predict how carbon fibre composites will react when impacted, when crushed, or when put under extreme loading – allowing for improved crashworthiness design and reducing impact to passengers.

“Using mathematics and computer software, our Advanced Composites Research Group at Queen’s has developed a system which is as close to reality as possible and can pick up problems that may not always be visible, such as internal wing damage on a plane which may occur during operation. By understanding the failure mechanisms of composite materials such as carbon fibre, we are able to better exploit their unique properties and create very lightweight transportation structures. This will minimise environmental impact whilst ensuring utmost safety to passengers.”

The €4m European Union H2020 Marie Sklodowska-Curie Innovative Training Network award is being coordinated by Queen’s and includes an inter-disciplinary research consortium of experts from Universities, Research Institutions and Industry, across six European countries; the UK, Sweden, Italy, Greece, Ireland and Germany.  

Through the programme, fifteen early stage researchers will be trained up to become experts in this area, four of which will be registered at Queen’s University.

 


Photo provided by Queen’s University Belfast




comments powered by Disqus

Related / You might like...

Semi Automated Paint Lines Extend Finishing Capabilities

To support the growing demand for its full paint solutions, a £1.5m investment plan has been put into place to increase capacity and broaden Formaplex’s finishing capabilities.

New Dust Information Seminar Launched by Dark Matter Composites and Composites UK

Following on from two successful events in 2016, Dark Matter Composites and Composites UK are again teaming up to provide a seminar on risks, generation, capture and control measures for both carbon and glass fibre dust.

Mikrosam Leads The Industry with New Integrated Robotic Cell and Prepreg Layup for High-performance Production of Structural Composite Parts

Mikrosam is launching an innovative machine that integrates AFP head for thermoset and ATL head for thermoplastic prepreg laying into a single robotic cell for custom development of structural composites.