Looking for our consultancy, conferencing, training or innovation services? Visit netcompositesenterprise.com

NetComposites Now
HIPA

IACMI Teams With Industry to Unveil Unique Combination of Technologies in Nine-meter Wind Turbine Blade

07 February 2017

IACMI Teams With Industry to Unveil Unique Combination of Technologies in Nine-meter Wind Turbine Blade

The Institute for Advanced Composites Manufacturing Innovation (IACMI), a Manufacturing US institute driven by the University of Tennessee, Knoxville and the US Department of Energy (DOE), has unveiled an advanced technology prototype wind blade during the Winter IACMI members meeting 1-2 February in Denver, Colorado, US.

According to IACMI, the nine- meter long blade was fabricated at its Wind Technology Area in the Denver, Colorado area. Commercialisation of the wind blade prototype created could speed production times, reduce manufacture cost, and provide stronger, more energy-efficient blades for the United States.

A large team of eleven industrial partners, including Arkema, Johns Manville, TPI Composites, Huntsman Polyurethanes, Strongwell, DowAksa US, Chomarat North America, Composites One, Creative Foam and Chem-Trend, provided materials and on site fabrication support for blade component manufacturing and assembly. Pultruded spar caps were fabricated at Strongwell in Bristol, Virginia and shipped to Colorado for incorporation into the blade shells. The project was led by IACMI’s Wind Technology Area, based in the Denver, Colorado area , with support from IACMI Headquarters, Oak Ridge National Laboratory (ORNL), the US Department of Energy’s Advanced Manufacturing Office, and the Advanced Industries Program administered by the Colorado Office of Economic Trade and Development (OEDIT).

“This project is a perfect example of IACMI’s strength bringing together partners representing the entire industry supply chain to demonstrate the latest technologies to address cost and performance of composites,” said Bryan Dods, IACMI-The Composites Institute CEO. “Wind energy OEMs are showing great interest in the current research and development work and we anticipate continued collaboration to mature these technologies.”

IACMI explains that the prototype blade is based on an existing design from previous work conducted by the DOE, representing a small-scale version of a utility-scale multi-megawatt blade. The new blade, moulded on tooling supplied by TPI Composites features innovations such as impact resistant components, continuous fibre reinforced thermoplastic parts and exterior shell components produced with less than half the normal CO2 emissions commonly emitted in wind blade manufacture.

“These innovations can be deployed in the near term in existing blade manufacturing plants,” said Derek Berry, IACMI’s Wind Technology Area Director. “The ability to infuse at room temperature, demould more quickly, and avoid post cure, plus use of low cost carbon fibre spar caps produced via high speed pultrusion, all contribute to reductions in the levelised cost of energy, the key measure of wind turbine efficiency.”

 


Photo provided by The Institute for Advanced Composites Manufacturing Innovation





comments powered by Disqus

Related / You might like...

Record Breaking Figures for JEC World 2017

JEC WORLD 2017 closed its doors on Thursday 16 March 2017 with a 2-digit attendance growth (+10%).

H-Prec, Pond and 3D Fortify Win JEC Group Startup Booster Competition

Additive manufacturing, biomaterials and disruptive technology on Pre-Preg are the 3 innovations presented by these 3 winners from France, Ireland and the US.

Applied Graphene Materials Host Ministerial Visit

On 2 March 2017, Lord Prior of Brampton visited Applied Graphene Materials (AGM) for an introduction to graphene and the science behind it.