Looking for our consultancy, conferencing, training or innovation services? Visit netcompositesenterprise.com

NetComposites Now
Premier Composites

IACMI Teams With Industry to Unveil Unique Combination of Technologies in Nine-meter Wind Turbine Blade

07 February 2017

IACMI Teams With Industry to Unveil Unique Combination of Technologies in Nine-meter Wind Turbine Blade

The Institute for Advanced Composites Manufacturing Innovation (IACMI), a Manufacturing US institute driven by the University of Tennessee, Knoxville and the US Department of Energy (DOE), has unveiled an advanced technology prototype wind blade during the Winter IACMI members meeting 1-2 February in Denver, Colorado, US.

According to IACMI, the nine- meter long blade was fabricated at its Wind Technology Area in the Denver, Colorado area. Commercialisation of the wind blade prototype created could speed production times, reduce manufacture cost, and provide stronger, more energy-efficient blades for the United States.

A large team of eleven industrial partners, including Arkema, Johns Manville, TPI Composites, Huntsman Polyurethanes, Strongwell, DowAksa US, Chomarat North America, Composites One, Creative Foam and Chem-Trend, provided materials and on site fabrication support for blade component manufacturing and assembly. Pultruded spar caps were fabricated at Strongwell in Bristol, Virginia and shipped to Colorado for incorporation into the blade shells. The project was led by IACMI’s Wind Technology Area, based in the Denver, Colorado area , with support from IACMI Headquarters, Oak Ridge National Laboratory (ORNL), the US Department of Energy’s Advanced Manufacturing Office, and the Advanced Industries Program administered by the Colorado Office of Economic Trade and Development (OEDIT).

“This project is a perfect example of IACMI’s strength bringing together partners representing the entire industry supply chain to demonstrate the latest technologies to address cost and performance of composites,” said Bryan Dods, IACMI-The Composites Institute CEO. “Wind energy OEMs are showing great interest in the current research and development work and we anticipate continued collaboration to mature these technologies.”

IACMI explains that the prototype blade is based on an existing design from previous work conducted by the DOE, representing a small-scale version of a utility-scale multi-megawatt blade. The new blade, moulded on tooling supplied by TPI Composites features innovations such as impact resistant components, continuous fibre reinforced thermoplastic parts and exterior shell components produced with less than half the normal CO2 emissions commonly emitted in wind blade manufacture.

“These innovations can be deployed in the near term in existing blade manufacturing plants,” said Derek Berry, IACMI’s Wind Technology Area Director. “The ability to infuse at room temperature, demould more quickly, and avoid post cure, plus use of low cost carbon fibre spar caps produced via high speed pultrusion, all contribute to reductions in the levelised cost of energy, the key measure of wind turbine efficiency.”

 


Photo provided by The Institute for Advanced Composites Manufacturing Innovation




comments powered by Disqus

Related / You might like...

Semi Automated Paint Lines Extend Finishing Capabilities

To support the growing demand for its full paint solutions, a £1.5m investment plan has been put into place to increase capacity and broaden Formaplex’s finishing capabilities.

Mikrosam Leads The Industry with New Integrated Robotic Cell and Prepreg Layup for High-performance Production of Structural Composite Parts

Mikrosam is launching an innovative machine that integrates AFP head for thermoset and ATL head for thermoplastic prepreg laying into a single robotic cell for custom development of structural composites.

ELG Carbon Fibre and Adesso Advanced Materials Cooperate on Recycled Carbon Fibre for Automotive Applications

ELG Carbon Fibre and Adesso Advanced Materials Wuhu (Wuhu, China) have concluded a MOU regarding cooperation to develop lightweight composite components for the automotive industry based on ELG’s recycled carbon fibre materials.